Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun;129(6):3490-501.
doi: 10.1121/1.3589247.

Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid

Affiliations

Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid

Jingtao Wang et al. J Acoust Soc Am. 2011 Jun.

Abstract

In this paper, theoretical calculations as well as numerical simulations are performed for the time-averaged acoustic force and torque on a rigid cylinder of arbitrary size in a fluid with low viscosity, i.e., the acoustic boundary layer is thin compared to the cylinder radius. An exact analytical solution and its approximation are proposed in the form of an infinite series including Bessel functions. These solutions can be evaluated easily by a mathematical software package such as mathematica and matlab. Three types of incident waves, plane traveling wave, plane standing wave, and dual orthogonal standing waves, are investigated in detail. It is found that for a small particle, the viscous effects for an incident standing wave may be neglected but those for an incident traveling wave are notable. A nonzero viscous torque is experienced by the rigid cylinder when subjected to dual orthogonal standing waves with a phase shift even when the cylinder is located at equilibrium positions without imposed acoustic forces. Furthermore, numerical simulations are carried out based on the FVM algorithm to verify the proposed theoretical formulas. The theoretical results and the numerical ones agree with each other very well in all the cases considered.

PubMed Disclaimer

LinkOut - more resources