Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct;68(1):51-63.
doi: 10.1111/j.1365-313X.2011.04675.x. Epub 2011 Jul 25.

MTR4, a putative RNA helicase and exosome co-factor, is required for proper rRNA biogenesis and development in Arabidopsis thaliana

Affiliations
Free article

MTR4, a putative RNA helicase and exosome co-factor, is required for proper rRNA biogenesis and development in Arabidopsis thaliana

Heike Lange et al. Plant J. 2011 Oct.
Free article

Erratum in

  • Correction.
    [No authors listed] [No authors listed] Plant J. 2017 Jul;91(2):355-356. doi: 10.1111/tpj.13594. Plant J. 2017. PMID: 28670740 No abstract available.

Abstract

The exosome is a conserved protein complex that is responsible for essential 3'→5' RNA degradation in both the nucleus and the cytosol. It is composed of a nine-subunit core complex to which co-factors confer both RNA substrate recognition and ribonucleolytic activities. Very few exosome co-factors have been identified in plants. Here, we have characterized a putative RNA helicase, AtMTR4, that is involved in the degradation of several nucleolar exosome substrates in Arabidopsis thaliana. We show that AtMTR4, rather than its closely related protein HEN2, is required for proper rRNA biogenesis in Arabidopsis. AtMTR4 is mostly localized in the nucleolus, a subcellular compartmentalization that is shared with another exosome co-factor, RRP6L2. AtMTR4 and RRP6L2 cooperate in several steps of rRNA maturation and surveillance, such as processing the 5.8S rRNA and removal of rRNA maturation by-products. Interestingly, degradation of the Arabidopsis 5' external transcribed spacer (5' ETS) requires cooperation of both the 5'→3' and 3'→5' exoribonucleolytic pathways. Accumulating AtMTR4 targets give rise to illegitimate small RNAs; however, these do not affect rRNA metabolism or contribute to the phenotype of mtr4 mutants. Plants lacking AtMTR4 are viable but show several developmental defects, including aberrant vein patterning and pointed first leaves. The mtr4 phenotype resembles that of several ribosomal protein and nucleolin mutants, and may be explained by delayed ribosome biogenesis, as we observed a reduced rate of rRNA accumulation in mtr4 mutants. Taken together, these data link AtMTR4 with rRNA biogenesis and development in Arabidopsis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms