Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;76(1):3-18.
doi: 10.1016/0009-2797(90)90030-q.

Superoxide-driven NAD(P)H oxidation induced by EDTA-manganese complex and mercaptoethanol

Affiliations

Superoxide-driven NAD(P)H oxidation induced by EDTA-manganese complex and mercaptoethanol

F Paoletti et al. Chem Biol Interact. 1990.

Abstract

A purely chemical system for NAD(P)H oxidation to biologically active NAD(P)+ has been developed and characterized. Suitable amounts of EDTA, manganous ions and mercaptoethanol, combined at physiological pH, induce nucleotide oxidation through a chain length also involving molecular oxygen, which eventually undergoes quantitative reduction to hydrogen peroxide. Mn2+ is specifically required for activity, while both EDTA and mercaptoethanol can be replaced by analogs. Optimal molar ratios of chelator/metal ion (2:1) yield an active coordination compound which catalyzes thiol autoxidation to thiyl radical. The latter is further oxidized to disulfide by molecular oxygen whose one-electron reduction generates superoxide radical. Superoxide dismutase (SOD) inhibits both thiol oxidation and oxygen consumption as well as oxidation of NAD(P)H if present in the mixture. A tentative scheme for the chain length occurring in the system is proposed according to stoichiometry of reactions involved. Two steps appear of special importance in nucleotide oxidation: (a) the supposed transient formation of NAD(P). from the reaction between NAD(P)H and thiyl radicals; (b) the oxidation of the reduced complex by superoxide to keep thiol oxidation cycling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources