Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Oct;1808(10):2600-7.
doi: 10.1016/j.bbamem.2011.05.021. Epub 2011 Jun 7.

Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: a comparative study of spinach SoPIP2;1 and E. coli AqpZ

Affiliations
Free article
Comparative Study

Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: a comparative study of spinach SoPIP2;1 and E. coli AqpZ

Jesper S Hansen et al. Biochim Biophys Acta. 2011 Oct.
Free article

Abstract

This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study of two aquaporins with high structural homology SoPIP2;1 and AqpZ using identical reconstitution conditions. Our CD results indicate that SDS, when added to membrane-reconstituted aquaporins in concentrations below the SDS critical micelle concentration (CMC, ~8mM), causes helical rearrangements of both aquaporins. However, we do not find compelling evidence for unfolding. In contrast when SDS is added to detergent stabilized aquaporins, SoPIP2;1 partly unfolds, while AqpZ secondary structure is unaffected. Using a fluorescent polarity sensitive probe (Badan) we show that SDS action on membrane reconstituted SoPIP2;1 as well as AqpZ is associated with initial increased hydrophobic interactions in protein transmembrane (TM) spanning regions up to a concentration of 0.1× CMC. At higher SDS concentrations TM hydrophobic interactions, as reported by Badan, decrease and reach a plateau from SDS CMC up to 12.5× CMC. Combined, our results show that SDS does not unfold neither SoPIP2;1 nor AqpZ during transition from a membrane reconstituted form to a detergent stabilized state albeit the native folds are changed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources