Zebrafish (Danio rerio) fed vitamin E-deficient diets produce embryos with increased morphologic abnormalities and mortality
- PMID: 21684137
- PMCID: PMC3179832
- DOI: 10.1016/j.jnutbio.2011.02.002
Zebrafish (Danio rerio) fed vitamin E-deficient diets produce embryos with increased morphologic abnormalities and mortality
Abstract
Vitamin E (α-tocopherol) is required to prevent fetal resorption in rodents. To study α-tocopherol's role in fetal development, a nonplacental model is required. Therefore, the zebrafish, an established developmental model organism, was studied by feeding the fish a defined diet with or without added α-tocopherol. Zebrafish (age, 4-6 weeks) were fed the deficient (E-), sufficient (E+) or lab diet up to 1 years. All groups showed similar growth rates. The exponential rate of α-tocopherol depletion up to ~80 day in E- zebrafish was 0.029±0.006 nmol/g, equivalent to a depletion half-life of 25±5 days. From age ~80 days, the E- fish (5±3 nmol/g) contained ~50 times less α-tocopherol than the E+ or lab diet fish (369±131 or 362±107, respectively; P<.05). E-depleted adults demonstrated decreased startle response suggesting neurologic deficits. Expression of selected oxidative stress and apoptosis genes from livers isolated from the zebrafish fed the three diets were evaluated by quantitative polymerase chain reaction and were not found to vary with vitamin E status. When E-depleted adults were spawned, they produced viable embryos with depleted α-tocopherol concentrations. The E- embryos exhibited a higher mortality (P<.05) at 24 h post-fertillization and a higher combination of malformations and mortality (P<.05) at 120 h post-fertillization than embryos from parents fed E+ or lab diets. This study documents for the first time that vitamin E is essential for normal zebrafish embryonic development.
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures








References
-
- Evans HM, Bishop KS. On the Existence of a Hitherto Unrecognized Dietary Factor Essential for Reproduction. Science. 1922;56:650–651. - PubMed
-
- Jishage K, Arita M, Igarashi K, Iwata T, Watanabe M, Ogawa M, Ueda O, Kamada N, Inoue K, Arai H, Suzuki H. Alpha-tocopherol transfer protein is important for the normal development of placental labyrinthine trophoblasts in mice. J Biol Chem. 2001;276:1669–1672. - PubMed
-
- Kaempf-Rotzoll DE, Igarashi K, Aoki J, Jishage K, Suzuki H, Tamai H, Linderkamp O, Arai H. Alpha-tocopherol transfer protein is specifically localized at the implantation site of pregnant mouse uterus. Biol Reprod. 2002;67:599–604. - PubMed
-
- Kaempf-Rotzoll DE, Horiguchi M, Hashiguchi K, Aoki J, Tamai H, Linderkamp O, Arai H. Human placental trophoblast cells express alpha-tocopherol transfer protein. Placenta. 2003;24:439–444. - PubMed
-
- Muller-Schmehl K, Beninde J, Finckh B, Florian S, Dudenhausen JW, Brigelius-Flohe R, Schuelke M. Localization of alpha-tocopherol transfer protein in trophoblast, fetal capillaries’ endothelium and amnion epithelium of human term placenta. Free Radic Res. 2004;38:413–420. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous