The neural encoding of self-motion
- PMID: 21689924
- DOI: 10.1016/j.conb.2011.05.022
The neural encoding of self-motion
Abstract
As we move through the world, information can be combined from multiple sources in order to allow us to perceive our self-motion. The vestibular system detects and encodes the motion of the head in space. In addition, extra-vestibular cues such as retinal-image motion (optic flow), proprioception, and motor efference signals, provide valuable motion cues. Here I focus on the coding strategies that are used by the brain to create neural representations of self-motion. I review recent studies comparing the thresholds of single versus populations of vestibular afferent and central neurons. I then consider recent advances in understanding the brain's strategy for combining information from the vestibular sensors with extra-vestibular cues to estimate self-motion. These studies emphasize the need to consider not only the rules by which multiple inputs are combined, but also how differences in the behavioral context govern the nature of what defines the optimal computation.
Copyright © 2011 Elsevier Ltd. All rights reserved.
Similar articles
-
Multimodal integration of self-motion cues in the vestibular system: active versus passive translations.J Neurosci. 2013 Dec 11;33(50):19555-66. doi: 10.1523/JNEUROSCI.3051-13.2013. J Neurosci. 2013. PMID: 24336720 Free PMC article.
-
Visual self-motion perception during head turns.Nat Neurosci. 1998 Dec;1(8):732-7. doi: 10.1038/3732. Nat Neurosci. 1998. PMID: 10196591
-
Signal processing in the vestibular system during active versus passive head movements.J Neurophysiol. 2004 May;91(5):1919-33. doi: 10.1152/jn.00988.2003. J Neurophysiol. 2004. PMID: 15069088 Review.
-
Sensory vestibular contributions to constructing internal models of self-motion.J Neural Eng. 2005 Sep;2(3):S164-79. doi: 10.1088/1741-2560/2/3/S02. Epub 2005 Aug 31. J Neural Eng. 2005. PMID: 16135882 Review.
-
The brain weights body-based cues higher than vision when estimating walked distances.Eur J Neurosci. 2010 May;31(10):1889-98. doi: 10.1111/j.1460-9568.2010.07212.x. Eur J Neurosci. 2010. PMID: 20584194
Cited by
-
Models of vestibular semicircular canal afferent neuron firing activity.J Neurophysiol. 2019 Dec 1;122(6):2548-2567. doi: 10.1152/jn.00087.2019. Epub 2019 Nov 6. J Neurophysiol. 2019. PMID: 31693427 Free PMC article. Review.
-
Feedback optimizes neural coding and perception of natural stimuli.Elife. 2018 Oct 5;7:e38935. doi: 10.7554/eLife.38935. Elife. 2018. PMID: 30289387 Free PMC article.
-
Integration of visual and tactile information in reproduction of traveled distance.J Neurophysiol. 2017 Sep 1;118(3):1650-1663. doi: 10.1152/jn.00342.2017. Epub 2017 Jun 28. J Neurophysiol. 2017. PMID: 28659463 Free PMC article.
-
Vestibulo-ocular reflex suppression during head-fixed saccades reveals gaze feedback control.J Neurosci. 2015 Jan 21;35(3):1192-8. doi: 10.1523/JNEUROSCI.3875-14.2015. J Neurosci. 2015. PMID: 25609633 Free PMC article.
-
Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways.Elife. 2018 Dec 18;7:e43019. doi: 10.7554/eLife.43019. Elife. 2018. PMID: 30561328 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials