Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training
- PMID: 21690193
- PMCID: PMC3179997
- DOI: 10.1113/jphysiol.2011.213363
Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training
Abstract
MicroRNAs (miRNAs) are intracellular mediators of essential biological functions. Recently, plasma-based 'circulating' miRNAs (c-miRNAs) have been shown to control cellular processes, but the c-miRNA response to human exercise remains unknown. We sought to determine whether c-miRNAs are dynamically regulated in response to acute exhaustive cycling exercise and sustained rowing exercise training using a longitudinal, repeated measures study design. Specifically, c-miRNAs involved in angiogenesis (miR-20a, miR-210, miR-221, miR-222, miR-328), inflammation (miR-21, miR-146a), skeletal and cardiac muscle contractility (miR-21, miR-133a), and hypoxia/ischaemia adaptation (miR-21, miR-146a, and miR-210) were measured at rest and immediately following acute exhaustive cycling exercise in competitive male rowers (n = 10, age = 19.1 ± 0.6 years) before and after a 90 day period of rowing training. Distinct patterns of c-miRNA response to exercise were observed and adhered to four major profiles: (1) c-miRNA up-regulated by acute exercise before and after sustained training (miR-146a and miR-222), (2) c-miRNA responsive to acute exercise before but not after sustained training (miR-21 and miR-221), (3) c-miRNA responsive only to sustained training (miR-20a), and (4) non-responsive c-miRNA (miR-133a, miR-210, miR-328). Linear correlations were observed between peak exercise levels of miR-146a and VO2max (r = 0.63, P = 0.003) and between changes in resting miR-20a and changes in VO2max (pre-training vs. post-training, r = 0.73; P = 0.02). Although future work is required, these results suggest the potential value of c-miRNAs as exercise biomarkers and their possible roles as physiological mediators of exercise-induced cardiovascular adaptation.
Figures






References
-
- Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355. - PubMed
-
- Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T. The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab. 2010;298:E799–806. - PubMed
-
- Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, Picard MH, Hutter AM, Jr, Wood MJ. Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol. 2008;104:1121–1128. - PubMed
-
- Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60:2020–2027. - PubMed
-
- Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol. 2005;98:482–488. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical