Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 20;18(37):R585-633.
doi: 10.1088/0953-8984/18/37/R01. Epub 2006 Aug 24.

State dependent particle dynamics in liquid alkali metals

Affiliations

State dependent particle dynamics in liquid alkali metals

W-C Pilgrim et al. J Phys Condens Matter. .

Abstract

This paper gives a survey of the particle dynamics in the liquid alkali metals observed with inelastic x-ray and neutron scattering experiments. Liquid rubidium and sodium are chosen as model fluids to represent the behaviour of this group of fluids. In the dense metallic monatomic melt the microscopic dynamics is characterized by collective excitations similar to those in the corresponding solids. The collective particle behaviour is appropriately described using a memory function formalism with two relaxation channels for the density correlation. A similar behaviour is found for the single particle motion where again two relaxation mechanisms are needed to accurately reproduce the experimental findings. Special emphasis is given to the density dependence of the particle dynamics. An interesting issue in liquid metals is the metal to non-metal transition, which is observed if the fluid is sufficiently expanded with increasing temperature and pressure. This causes distinct variations in the interparticle interactions, which feed back onto the motional behaviour. The associated variations in structure and dynamics are reflected in the shape of the scattering laws. The experimentally observed features are discussed and compared with simple models and with the results from computer simulations.

PubMed Disclaimer

LinkOut - more resources