Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;87(1):10-9.
doi: 10.1111/j.1600-0609.2011.01626.x.

Investigating the role of CD38 and functionally related molecular risk factors in the CLL NOD/SCID xenograft model

Affiliations

Investigating the role of CD38 and functionally related molecular risk factors in the CLL NOD/SCID xenograft model

Semra Aydin et al. Eur J Haematol. 2011 Jul.

Abstract

We explored the role of CD38 and functionally associated molecular risk factors in a recently described chronic lymphocytic leukemia (CLL) nonobese diabetic/ severe combined immunodeficient xenograft model. Intravenous injection of peripheral blood mononuclear cells from 73 patients with CLL into 244 mice resulted in robust engraftment of leukemic cells into the murine spleens detected 4 wks after transplantation. Leukemic cell engraftment correlated significantly (P < 0.05) with markers reflecting disease activity, e.g., Binet stage and lymphocyte doubling time, and the expression of molecular risk factors including CD38, CD49d, ZAP-70, and IgVH mutational status. Increased engraftment levels of CD38+ as compared to CD38- CLL cells could be attributed, in part, to leukemic cell proliferation as evidenced by combined immunostaining of murine spleen sections for Ki-67 and CD20. In short-term (24 h) homing assays, CD38+ CLL cells migrated more efficiently to the bone marrow of the recipient animals than their CD38- counterparts. Finally, CD38 expression by the leukemic cells was found to be dynamic in that it was regulated not only by elements of the murine microenvironment but also by co-engrafting non-malignant human T cells. This model could be useful for evaluating the biological basis of CLL growth in the context of the hematopoietic microenvironment as well as preclinical testing of novel compounds.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources