Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods
- PMID: 21693555
- PMCID: PMC3167626
- DOI: 10.1093/nar/gkr504
Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods
Abstract
Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion.
Figures








Similar articles
-
Diagnostic applications of nucleic acid circuits.Acc Chem Res. 2014 Jun 17;47(6):1825-35. doi: 10.1021/ar500059c. Epub 2014 May 14. Acc Chem Res. 2014. PMID: 24828239 Free PMC article.
-
Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits.J Am Chem Soc. 2012 Aug 29;134(34):13918-21. doi: 10.1021/ja300984b. Epub 2012 Aug 20. J Am Chem Soc. 2012. PMID: 22894754 Free PMC article.
-
Lighting Up Fluorescent Silver Clusters via Target-Catalyzed Hairpin Assembly for Amplified Biosensing.Langmuir. 2018 Dec 11;34(49):14851-14857. doi: 10.1021/acs.langmuir.8b01576. Epub 2018 Aug 8. Langmuir. 2018. PMID: 30044098
-
Signal amplification strategy of DNA self-assembled biosensor and typical applications in pathogenic microorganism detection.Talanta. 2024 May 15;272:125759. doi: 10.1016/j.talanta.2024.125759. Epub 2024 Feb 12. Talanta. 2024. PMID: 38350248 Review.
-
Integration of Isothermal Enzyme-Free Nucleic Acid Circuits for High-Performance Biosensing Applications.Chempluschem. 2023 Oct;88(10):e202300432. doi: 10.1002/cplu.202300432. Epub 2023 Oct 10. Chempluschem. 2023. PMID: 37706615 Review.
Cited by
-
Light-Up RNA Aptamers and Their Cognate Fluorogens: From Their Development to Their Applications.Int J Mol Sci. 2017 Dec 23;19(1):44. doi: 10.3390/ijms19010044. Int J Mol Sci. 2017. PMID: 29295531 Free PMC article. Review.
-
Programmable High-Speed and Hyper-Efficiency DNA Signal Magnifier.Adv Sci (Weinh). 2022 Feb;9(4):e2104084. doi: 10.1002/advs.202104084. Epub 2021 Dec 16. Adv Sci (Weinh). 2022. PMID: 34913619 Free PMC article.
-
Construction of an autonomously concatenated hybridization chain reaction for signal amplification and intracellular imaging.Chem Sci. 2017 Oct 23;9(1):52-61. doi: 10.1039/c7sc03939e. eCollection 2018 Jan 7. Chem Sci. 2017. PMID: 29629073 Free PMC article.
-
Catalytic Amplification of Electrochemical Signal in Homogeneous Solution Using an Entropy-driven DNA Circuit.Anal Sci. 2021 Mar 10;37(3):533-537. doi: 10.2116/analsci.20SCN04. Epub 2020 Nov 6. Anal Sci. 2021. PMID: 33162418
-
Multiplexed in situ immunofluorescence using dynamic DNA complexes.Angew Chem Int Ed Engl. 2012 Sep 10;51(37):9292-6. doi: 10.1002/anie.201204304. Epub 2012 Aug 15. Angew Chem Int Ed Engl. 2012. PMID: 22893271 Free PMC article. No abstract available.
References
-
- Adler M, Wacker R, Niemeyer CM. Sensitivity by combination: immuno-PCR and related technologies. Analyst. 2008;133:702–718. - PubMed
-
- Niemeyer CM, Adler M, Wacker R. Detecting antigens by quantitative immuno-PCR. Nat. Protoc. 2007;2:1918–1930. - PubMed
-
- Zhao W, Ali MM, Brook MA, Li Y. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew. Chem. Int. Ed. Engl. 2008;47:6330–6337. - PubMed
-
- Cho EJ, Yang L, Levy M, Ellington AD. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J. Am. Chem. Soc. 2005;127:2022–2023. - PubMed
-
- Gullberg M, Fredriksson S, Taussig M, Jarvius J, Gustafsdottir S, Landegren U. A sense of closeness: protein detection by proximity ligation. Curr. Opin. Biotechnol. 2003;14:82–86. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous