Murine missing in metastasis (MIM) mediates cell polarity and regulates the motility response to growth factors
- PMID: 21695258
- PMCID: PMC3111439
- DOI: 10.1371/journal.pone.0020845
Murine missing in metastasis (MIM) mediates cell polarity and regulates the motility response to growth factors
Abstract
Background: Missing in metastasis (MIM) is a member of the inverse BAR-domain protein family, and in vitro studies have implied MIM plays a role in deforming membrane curvature into filopodia-like protrusions and cell dynamics. Yet, the physiological role of the endogenous MIM in mammalian cells remains undefined.
Principal findings: We have examined mouse embryonic fibroblasts (MEFs) derived from mice in which the MIM locus was targeted by a gene trapping vector. MIM(-/-) MEFs showed a less polarized architecture characterized by smooth edges and fewer cell protrusions as compared to wild type cells, although the formation of filopodia-like microprotrusions appeared to be normal. Immunofluorescent staining further revealed that MIM(-/-) cells were partially impaired in the assembly of stress fibers and focal adhesions but were enriched with transverse actin filaments at the periphery. Poor assembly of stress fibers was apparently correlated with attenuation of the activity of Rho GTPases and partially relieved upon overexpressing of Myc-RhoA(Q63L), a constitutively activated RhoA mutant. MIM(-/-) cells were also spread less effectively than wild type cells during attachment to dishes and substratum. Upon treatment with PDGF MIM(-/-) cells developed more prominent dorsal ruffles along with increased Rac1 activity. Compared to wild type cells, MIM(-/-) cells had a slower motility in the presence of a low percentage of serum-containing medium but migrated normally upon adding growth factors such as 10% serum, PDGF or EGF. MIM(-/-) cells were also partially impaired in the internalization of transferrin, fluorescent dyes, foreign DNAs and PDGF receptor alpha. On the other hand, the level of tyrosine phosphorylation of PDGF receptors was more elevated in MIM depleted cells than wild type cells upon PDGF treatment.
Conclusions: Our data suggests that endogenous MIM protein regulates globally the cell architecture and endocytosis that ultimately influence a variety of cellular behaviors, including cell polarity, motility, receptor signaling and membrane ruffling.
Conflict of interest statement
Figures






References
-
- Wang Y, Liu J, Smith E, Zhou K, Liao J, et al. Downregulation of missing in metastasis gene (MIM) is associated with the progression of bladder transitional carcinomas. Cancer Invest. 2007;25:79–86. 777189587. - PubMed
-
- Nixdorf S, Grimm MO, Loberg R, Marreiros A, Russell PJ, et al. Expression and regulation of MIM (Missing In Metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer Lett. 2004;215:209–220. S0304-3835(04)00348-9. - PubMed
-
- Parr C, Jiang WG. Metastasis suppressor 1 (MTSS1) demonstrates prognostic value and anti-metastatic properties in breast cancer. Eur J Cancer. 2009;45:1673–1683. S0959-8049(09)00148-8. - PubMed
-
- van DM, van MR, Vissers KJ, Hop WC, Dinjens WN, et al. High-resolution array comparative genomic hybridization of chromosome 8q: evaluation of putative progression markers for gastroesophageal junction adenocarcinomas. Cytogenet Genome Res. 2007;118:130–137. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials