Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;6(6):e20981.
doi: 10.1371/journal.pone.0020981. Epub 2011 Jun 15.

Planktonic microbes in the Gulf of Maine area

Affiliations
Review

Planktonic microbes in the Gulf of Maine area

William K W Li et al. PLoS One. 2011.

Abstract

In the Gulf of Maine area (GoMA), as elsewhere in the ocean, the organisms of greatest numerical abundance are microbes. Viruses in GoMA are largely cyanophages and bacteriophages, including podoviruses which lack tails. There is also evidence of Mimivirus and Chlorovirus in the metagenome. Bacteria in GoMA comprise the dominant SAR11 phylotype cluster, and other abundant phylotypes such as SAR86-like cluster, SAR116-like cluster, Roseobacter, Rhodospirillaceae, Acidomicrobidae, Flavobacteriales, Cytophaga, and unclassified Alphaproteobacteria and Gammaproteobacteria clusters. Bacterial epibionts of the dinoflagellate Alexandrium fundyense include Rhodobacteraceae, Flavobacteriaceae, Cytophaga spp., Sulfitobacter spp., Sphingomonas spp., and unclassified Bacteroidetes. Phototrophic prokaryotes in GoMA include cyanobacteria that contain chlorophyll (mainly Synechococcus), aerobic anoxygenic phototrophs that contain bacteriochlorophyll, and bacteria that contain proteorhodopsin. Eukaryotic microalgae in GoMA include Bacillariophyceae, Dinophyceae, Prymnesiophyceae, Prasinophyceae, Trebouxiophyceae, Cryptophyceae, Dictyochophyceae, Chrysophyceae, Eustigmatophyceae, Pelagophyceae, Synurophyceae, and Xanthophyceae. There are no records of Bolidophyceae, Aurearenophyceae, Raphidophyceae, and Synchromophyceae in GoMA. In total, there are records for 665 names and 229 genera of microalgae. Heterotrophic eukaryotic protists in GoMA include Dinophyceae, Alveolata, Apicomplexa, amoeboid organisms, Labrynthulida, and heterotrophic marine stramenopiles (MAST). Ciliates include Strombidium, Lohmaniella, Tontonia, Strobilidium, Strombidinopsis and the mixotrophs Laboea strobila and Myrionecta rubrum (ex Mesodinium rubra). An inventory of selected microbial groups in each of 14 physiographic regions in GoMA is made by combining information on the depth-dependent variation of cell density and the depth-dependent variation of water volume. Across the entire GoMA, an estimate for the minimum abundance of cell-based microbes is 1.7×10(25) organisms. By one account, this number of microbes implies a richness of 10(5) to 10(6) taxa in the entire water volume of GoMA. Morphological diversity in microplankton is well-described but the true extent of taxonomic diversity, especially in the femtoplankton, picoplankton and nanoplankton--whether autotrophic, heterotrophic, or mixotrophic, is unknown.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Gulf of Maine Area map.
Fourteen physiographic regions are defined for this study (Text S1). The shaded bathymetry is from United States Geological Survey 15 arc sec data used in the hypsometric calculations. High-resolution data were not available for the portion (2%) of the study area that is not shaded.
Figure 2
Figure 2. Abundance of microbial groups on the Scotian Shelf.
(A) Bacteria (prokaryotes excluding cyanobacteria); (B) Chlorophyll a; (C) Synechococcus; (D) Picoeukaryotic phytoplankton; (E) Small nanophytoplankton; (F) Large nanophytoplankton. Data are from the Atlantic Zone Monitoring Program and binned into 5 m depth intervals. Profiles indicate average values and standard deviations from a network of stations on the Scotian Shelf sampled mainly in the spring and autumn from 1997 to 2010.
Figure 3
Figure 3. Depth-varying correlations of microbial abundance versus chlorophyll a concentration in the Gulf of Maine.
(A) Map of 3 stations in Jordan Basin, 1 station in Crowell Basin, and 2 stations in the Northeast Channel. Samples were collected in the upper 200 m from June 13–16, 2005 during the Discovery Corridor cruise. (B) Bacteria; (C) Synechococcus; (D) Picoeukaryotic phytoplankton; (E) Small nanophytoplankton; (F) Large nanophytoplankton. Microbial abundance in units of log cells ml-1; chlorophyll a concentration in units of log mg m-3.

References

    1. Snelgrove PVR. Cambridge University Press; 2010. Discoveries of the Census of Marine Life.
    1. Archambault P, Snelgrove PVR, Fisher JAD, Gagnon J-M, Garbary DJ, et al. From sea to sea: Canada's three oceans of biodiversity. PLoS ONE. 2010;5:e12182. - PMC - PubMed
    1. Fautin D, Dalton P, Incze LS, Leong J-AC, Pautzke C, et al. An overview of marine biodiversity in United States waters. PLoS ONE. 2010;5:e11914. - PMC - PubMed
    1. Mills EL. New York: Cornell University Press; 1989. Biological oceanography: An early history, 1870-1960.
    1. Zwanenburg KCT, Bundy A, Strain P, Bowen WD, Breeze H, et al. Implications of ecosystem dynamics for the integrated management of the eastern Scotian Shelf. Can Tech Rep Fish Aquat Sci. 2006;2652:xiii +91.

Publication types