Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep;58(3):713-20.
doi: 10.1016/S0006-3495(90)82414-0.

Mapping of collision frequencies for stearic acid spin labels by saturation-recovery electron paramagnetic resonance

Affiliations

Mapping of collision frequencies for stearic acid spin labels by saturation-recovery electron paramagnetic resonance

J J Yin et al. Biophys J. 1990 Sep.

Abstract

Short pulse saturation-recovery electron paramagnetic resonance methods have been used to measure interactions of 14N:15N stearic acid spin label pairs in multilamellar liposomal dispersions composed of dimyristoyl-phosphatidylcholine (DMPC) and dielaidoylphosphatidylcholine (DEPC). Pairs consisting of various combinations of [14N]-16-, [14N]-12- or [14N]-5-doxylstearate, and [15N]-16-, [15N]-12-, or [15N]-5-doxylstearate were studied. SR experiments were performed at 27 degrees and 37 degrees C, and recovery signals were analyzed for initial conditions and multiexponential time constants by computer fitting using a damped least-squares approach. The time constants contain combinations of the electron spin lattice relaxation time, Tle, for each member of the spin-label pair, and the Heisenberg exchange rate constant, Kx. Spin-lattice relaxation times for each of the 14N and 15N stearic acid spin labels were determined, and it is noted that Tle for a given 15N-SASL was always slightly greater than that of the corresponding 14N-SASL. From Kx the bimolecular collision frequency was calculated, providing a detailed picture of molecular interactions. For both lipid systems the bimolecular collision rates were ordered as 12:5 less than 16:5 less than 5:5 less than 16:12 less than 12:12 less than 16:16. For all spin-label pairs studied, interaction frequencies were greater in DMPC than in DEPC. For the 16:16, 12:12, and 16:12 pairs, Kx was approximately 30% greater in DMPC than in DEPC, a significantly greater difference than is observed by conventional EPR methods. Further confirmation of the existence of vertical fluctuation of nitroxide moieties that are at the 16- (or 12) position toward the polar surfaces was obtained, with the frequency of 16:5 (or 12:5) interactions ~40% of the 16:16 (or 12:12) interaction frequency. In both DMPC and DEPC, Kx for homogeneous pairs increases as the doxyl moiety is moved further down the alkyl chain (i.e.,5:5 < 12:12 < 16:16), suggesting that steric effects or the local rotational mobility of the nitroxide group influence the frequency at which spin exchange occurs.

PubMed Disclaimer

References

    1. Biochemistry. 1987 Jun 30;26(13):3850-5 - PubMed
    1. FEBS Lett. 1987 Oct 19;223(1):20-4 - PubMed
    1. Biophys J. 1987 Dec;52(6):1031-8 - PubMed
    1. Biochemistry. 1970 Mar 31;9(7):1547-53 - PubMed
    1. J Am Chem Soc. 1971 Jan 27;93(2):314-26 - PubMed

Publication types

MeSH terms