Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jul;98(7):837-46.
doi: 10.1684/bdc.2011.1398.

[The role of RANK/RANKL/osteoprotegerin (OPG) triad in cancer-induced bone diseases: physiopathology and clinical implications]

[Article in French]
Affiliations
Review

[The role of RANK/RANKL/osteoprotegerin (OPG) triad in cancer-induced bone diseases: physiopathology and clinical implications]

[Article in French]
Philippe Clézardin. Bull Cancer. 2011 Jul.

Abstract

Bone homeostasis is maintained by the remodelling of bone which depends on a balance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Malignant bone lesions are very common in patients with cancer; whether they result from a tumor in bone (giant cell tumour of bone, osteosarcoma, multiple myeloma...) or they are bony metastases from advanced cancers of which the most osteotropic are breast and prostate cancer. Malignant cells within the bone disrupt the normal bone remodelling process, leading to increased bone destruction and occurence of pathological fractures. Receptor activator of NF-kB (RANK) and its ligand (RANKL) play a pivotal role in the regulation of bone remodelling; by binding to RANK, RANKL stimulates osteoclastogenesis and bone resorption, whereas its cognate decoy receptor osteoprotegerin (OPG) blocks this process by interacting with RANKL. Tumour cells produce different factors that manipulate the RANK/RANKL/OPG pathway in order to stimulate bone destruction. Furthermore, pending on the tumour type, RANKL plays a role in the migration, invasion and proliferation of malignant cells within the bone, while OPG increases survival of tumour cells. Inhibition of RANK/RANKL system may therefore offer new therapeutic perspectives for the treatment of primitive and secondary bone cancers.

PubMed Disclaimer

MeSH terms

LinkOut - more resources