Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun 24;8(1):42.
doi: 10.1186/1743-7075-8-42.

Tocotrienol rich fraction supplementation improved lipid profile and oxidative status in healthy older adults: A randomized controlled study

Affiliations

Tocotrienol rich fraction supplementation improved lipid profile and oxidative status in healthy older adults: A randomized controlled study

Siok-Fong Chin et al. Nutr Metab (Lond). .

Abstract

Background: Vitamin E supplements containing tocotrienols are now being recommended for optimum health but its effects are scarcely known. The objective was to determine the effects of Tocotrienol Rich Fraction (TRF) supplementation on lipid profile and oxidative status in healthy older individuals at a dose of 160 mg/day for 6 months.

Methods: Sixty-two subjects were recruited from two age groups: 35-49 years (n = 31) and above 50 years (n = 31), and randomly assigned to receive either TRF or placebo capsules for six months. Blood samples were obtained at 0, 3rd and 6th months.

Results: HDL-cholesterol in the TRF-supplemented group was elevated after 6 months (p < 0.01). Protein carbonyl contents were markedly decreased (p < 0.001), whereas AGE levels were lowered in the > 50 year-old group (p < 0.05). Plasma levels of total vitamin E particularly tocopherols were significantly increased in the TRF-supplemented group after 3 months (p < 0.01). Plasma total tocotrienols were only increased in the > 50 year-old group after receiving 6 months of TRF supplementation. Changes in enzyme activities were only observed in the > 50 year-old group. SOD activity was decreased after 3 (p < 0.05) and 6 (p < 0.05) months of TRF supplementation whereas CAT activity was decreased after 3 (p < 0.01) and 6 (p < 0.05) months in the placebo group. GPx activity was increased at 6 months for both treatment and placebo groups (p < 0.05).

Conclusion: The observed improvement of plasma cholesterol, AGE and antioxidant vitamin levels as well as the reduced protein damage may indicate a restoration of redox balance after TRF supplementation, particularly in individuals over 50 years of age.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Correlation between superoxide dismutase activity and age with TRF treatment for 6 months. TRF supplementation strengthened the association after 6 months. 0 month: r = 0.04, p = 0.81; 3 months: r = 0.06, p = 0.73; 6 months: r = 0.26, p = 0.21.
Figure 2
Figure 2
Correlation between glutathione peroxidase activity and age with TRF treatment for 6 months. TRF supplementation reversed the relationship after 6 months. 0 month: r = -0.17, p = 0.40; 3 months: r = -0.16, p = 0.41; 6 months: r = 0.05, p = 0.82.
Figure 3
Figure 3
Correlation between catalase activity and age with TRF treatment for 6 months. TRF supplementation strengthened the association after 3 and 6 months. 0 month: r = 0.16, p = 0.41; 3 months: r = 0.36, p = 0.06; 6 months: r = 0.23, p = 0.26.
Figure 4
Figure 4
Correlation between plasma protein carbonyl levels and age with TRF treatment for 6 months. TRF supplementation weakened the association after 3 and 6 months. 0 month: r = 0.21, p = 0.31; 3 months: r = 0.004, p = 0.98; 6 months: r = -0.15, p = 0.47.
Figure 5
Figure 5
Correlation between serum advanced glycosylation end-products and age with TRF treatment for 6 months. TRF supplementation reversed the association after 3 and 6 months. 0 month: r = 0.18, p = 0.21; 3 months: r = -0.13, p = 0.37; 6 months: r = -0.12, p = 0.47.
Figure 6
Figure 6
Correlation between plasma malondialdehyde levels and age with TRF treatment for 6 months. TRF supplementation reversed the association after 3 and 6 months. 0 month: r = 0.17, p = 0.25; 3 months: r = -0.19, p = 0.22; 6 months: r = -0.37, p = 0.02.

Similar articles

Cited by

References

    1. Shay JW, Wright WE. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov. 2006;5(7):577–584. doi: 10.1038/nrd2081. - DOI - PubMed
    1. Yap WN, Chang PN, Han HY, Lee DTW, Ling MT, Wong YC, Yap YL. γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. British Journal of Cancer. 2008;99(11):1832–1841. doi: 10.1038/sj.bjc.6604763. - DOI - PMC - PubMed
    1. Meydani M. Vitamin E modulation of cardiovascular disease. Ann NY Acad Sci. 2004;1031:271–279. doi: 10.1196/annals.1331.027. - DOI - PubMed
    1. Koga T, Kwan P, Zubik L, Ameho C, Smith D, Meydani M. Vitamin E supplementation suppresses macrophage accumulation and endothelial cell expression of adhesion molecules in the aorta of hypercholesterolemic rabbits. Atherosclerosis. 2004;176(2):265–272. doi: 10.1016/j.atherosclerosis.2004.05.034. - DOI - PubMed
    1. Montiel T, Quiroz-Baez R, Massieu L, Arias C. Role of oxidative stress on beta-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: protection by antioxidants. Exp Neurol. 2006;200:496–508. doi: 10.1016/j.expneurol.2006.02.126. - DOI - PubMed

LinkOut - more resources