Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jul 16;46(4):198-208.
doi: 10.1016/j.ejps.2011.06.005. Epub 2011 Jun 16.

Bioavailability and variability of biphasic insulin mixtures

Affiliations
Review

Bioavailability and variability of biphasic insulin mixtures

Tue Søeborg et al. Eur J Pharm Sci. .

Abstract

Absorption of subcutaneously administered insulin is associated with considerable variability. Some of this variability was quantitatively explained for both soluble insulin and insulin suspensions in a recent contribution to this journal (Søeborg et al., 2009). In the present article, the absorption kinetics for mixtures of insulins is described. This requires that the bioavailability of the different insulins is considered. A short review of insulin bioavailability and a description of the subcutaneous depot thus precede the presentation of possible mechanisms associated with subcutaneous insulin degradation. Soluble insulins are assumed to be degraded enzymatically in the subcutaneous tissue. Suspended insulin crystals form condensed heaps that are assumed to be degraded from their surface by invading macrophages. It is demonstrated how the shape of the heaps affects the absorption kinetics. Variations in heap formation thus explain some of the additional variability associated with suspended insulins (e.g. NPH insulins) compared to soluble insulins. The heap model also describes how increasing concentrations of suspended insulins lead to decreasing bioavailability and lower values of Cmax. Together, the findings constitute a comprehensive, quantitative description of insulin absorption after subcutaneous administration. The model considers different concentrations and doses of soluble insulin, including rapid acting insulin analogues, insulin suspensions and biphasic insulin mixtures. The results can be used in both the development of novel insulin products and in the planning of the treatment of insulin dependent diabetic patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms