Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov;56(11):1299-305.
doi: 10.1016/j.archoralbio.2011.05.013. Epub 2011 Jun 24.

Susceptibility of Candida albicans and Candida dubliniensis to erythrosine- and LED-mediated photodynamic therapy

Affiliations
Free article

Susceptibility of Candida albicans and Candida dubliniensis to erythrosine- and LED-mediated photodynamic therapy

Anna Carolina Borges Pereira Costa et al. Arch Oral Biol. 2011 Nov.
Free article

Abstract

The effect of erythrosine- and LED-mediated photodynamic therapy (PDT) on planktonic cultures and biofilms of Candida albicans and Candida dubliniensis was evaluated. Planktonic cultures of standardized suspensions (10(6)cells/mL) of C. albicans and C. dubliniensis were treated with erythrosine concentrations of 0.39-200 μM and LEDs in a 96-well microtiter plate. Biofilms formed by C. albicans and C. dubliniensis in the bottom of a 96-well microtiter plate were treated with 400 μM erythrosine and LEDs. After PDT, the biofilms were analysed by scanning electron microscopy (SEM). The antimicrobial effect of PDT against planktonic cultures and biofilms was verified by counting colony-forming units (CFU/mL), and the data were submitted to analysis of variance and the Tukey test (P<0.05). C. albicans and C. dubliniensis were not detectable after PDT of planktonic cultures with erythrosine concentrations of 3.12 μM or higher. The CFU/mL values obtained from biofilms were reduced 0.74 log(10) for C. albicans and 0.21 log(10) for C. dubliniensis. SEM revealed a decrease in the quantity of yeasts and hyphae in the biofilm after PDT. In conclusion, C. albicans and C. dubliniensis were susceptible to erythrosine- and LED-mediated PDT, but the biofilms of both Candida species were more resistant than their planktonic counterparts.

PubMed Disclaimer

Publication types

LinkOut - more resources