Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;93(1):357-65.
doi: 10.1007/s00253-011-3364-6. Epub 2011 Jun 25.

Biotechnological conversion of glycerol to 2-amino-1,3-propanediol (serinol) in recombinant Escherichia coli

Affiliations

Biotechnological conversion of glycerol to 2-amino-1,3-propanediol (serinol) in recombinant Escherichia coli

Björn Andreessen et al. Appl Microbiol Biotechnol. 2012 Jan.

Abstract

Microbial conversion is an important technology for the refinement of renewable resources. Here, we describe the biotechnological conversion of glycerol to 2-amino-1,3-propanediol (serinol), a relevant intermediate in several chemical syntheses processes. Either the dihydroxyacetone phosphate aminotransferase/dihydrorhizobitoxine synthase (RtxA) of Bradyrhizobium elkanii USD94 or only the N-terminal domain (RtxA513) comprising the first reaction, respectively, was expressed in recombinant Escherichia coli. Serinol contents of up to 3.3 g/l were achieved in batch cultures. We could further clarify that glutamic acid is the preferred cosubstrate for the transamination of dihydroxyacetone phosphate to serinolphosphate, which is the essential step in serinol synthesis. An in vivo detoxification of serinol employing wax ester synthase/acyl-CoA:diacyl-glycerol acyl transferase from Acinetobacter baylyi ADP1 was not accomplished. This study paves the way for biotechnological production of serinol from glycerol derived from the biodiesel industry.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources