Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 3;133(30):11716-24.
doi: 10.1021/ja2039562. Epub 2011 Jul 12.

Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction

Affiliations

Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction

Van Thi Thanh Ho et al. J Am Chem Soc. .

Abstract

The slow rate of the oxygen reduction reaction (ORR) and the instability of Pt-based catalysts are two of the most important issues that must be solved in order to make proton exchange membrane fuel cells (PEMFCs) a reality. Additionally, the serious carbon corrosion on the cathode side is a critical problem with respect to the durability of catalyst that limits its wide application. Here, we present a new approach by exploring robust noncarbon Ti(0.7)Mo(0.3)O(2) used as a novel functionalized cocatalytic support for Pt. This approach is based on the novel nanostructure Ti(0.7)Mo(0.3)O(2) support with "electronic transfer mechanism" from Ti(0.7)Mo(0.3)O(2) to Pt that can modify the surface electronic structure of Pt, owing to a shift in the d-band center of the surface Pt atoms. Furthermore, another benefit of Ti(0.7)Mo(0.3)O(2) is the extremely high stability of Pt/Ti(0.7)Mo(0.3)O(2) during potential cycling, which is attributable to the strong metal/support interaction (SMSI) between Pt and Ti(0.7)Mo(0.3)O(2). This also enhances the inherent structural and chemical stability and the corrosion resistance of the TiO(2)-based oxide in acidic and oxidative environments. We also demonstrate that the ORR current densities generated using cocatalytic Pt/Ti(0.7)Mo(0.3)O(2) are respectively ~7- and 2.6-fold higher than those of commercial Pt/C and PtCo/C catalysts with the same Pt loading. This new approach opens a reliable path to the discovery advanced concept in designing new catalysts that can replace the traditional catalytic structure and motivate further research in the field.

PubMed Disclaimer

LinkOut - more resources