Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2011 Jun 28:12:87.
doi: 10.1186/1471-2350-12-87.

Molecular diagnosis of hereditary inclusion body myopathy by linkage analysis and identification of a novel splice site mutation in GNE

Affiliations
Case Reports

Molecular diagnosis of hereditary inclusion body myopathy by linkage analysis and identification of a novel splice site mutation in GNE

Steven E Boyden et al. BMC Med Genet. .

Abstract

Background: Many myopathies share clinical features in common, and diagnosis often requires genetic testing. We ascertained a family in which five siblings presented with distal muscle weakness of unknown etiology.

Methods: We performed high-density genomewide linkage analysis and mutation screening of candidate genes to identify the genetic defect in the family. Preserved clinical biopsy material was reviewed to confirm the diagnosis, and reverse transcriptase PCR was used to determine the molecular effect of a splice site mutation.

Results: The linkage scan excluded the majority of known myopathy genes, but one linkage peak included the gene GNE, in which mutations cause autosomal recessive hereditary inclusion body myopathy type 2 (HIBM2). Muscle biopsy tissue from a patient showed myopathic features, including small basophilic fibers with vacuoles. Sequence analysis of GNE revealed affected individuals were compound heterozygous for a novel mutation in the 5' splice donor site of intron 10 (c.1816+5G>A) and a previously reported missense mutation (c.2086G>A, p.V696M), confirming the diagnosis as HIBM2. The splice site mutation correlated with exclusion of exon 10 from the transcript, which is predicted to produce an in-frame deletion (p.G545_D605del) of 61 amino acids in the kinase domain of the GNE protein. The father of the proband was heterozygous for the splice site mutation and exhibited mild distal weakness late in life.

Conclusions: Our study expands on the extensive allelic heterogeneity of HIBM2 and demonstrates the value of linkage analysis in resolving ambiguous clinical findings to achieve a molecular diagnosis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Pedigree. Subjects with DNA samples available and tested are labeled with their identification number. Black-filled symbols represent individuals affected with HIBM2, with onset in their 20s or 30s. Tested patients were compound heterozygous with genotype NM_005476.5: c.[1816+5G>A]+[2086G>A]. The gray-filled symbol represents an individual presenting in his 70s with mild HIBM-like symptoms, with genotype NM_005476.5: c.[1816+5G>A]+[=]. Arrow indicates the proband.
Figure 2
Figure 2
Pathology characteristic of HIBM in biceps muscle biopsy from proband. A) Hematoxylin and eosin staining showed marked variation in fiber diameter, rounded fibers, mild endomysial fibrosis, slight fatty infiltration, and irregular vacuoles (arrows) containing granular material. Frankly necrotic fibers, basophilic regenerating fibers, and inflammatory infiltrates were not prominent. The disease process appeared focal, with fibers in some areas mildly affected, while other regions, including the one shown here, exhibited severe myopathic pathology. B) Modified Gomori trichrome staining highlighted small amounts of granular red material within and around the vacuoles (arrow), as well as endomysial fibrosis and small, angulated, atrophic fibers.
Figure 3
Figure 3
Correlation of GNE transcript length with c.1816+5G>A splice mutation genotype. RNA was extracted from muscle biopsy tissue for subject 1159-1 and from saliva for subjects 1159-2 and 1159-3. By capillary electrophoresis, RT-PCR produced a single band of the expected size in control samples and 1159-2, the mother of the proband, in whom the c.1816+5G>A mutation was absent. The proband (1159-1), and her father (1159-3), both of whom were heterozygous for the c.1816+5G>A mutation, showed the full length band and a shorter band that lacked exon 10.

Similar articles

Cited by

References

    1. Argov Z, Yarom R. "Rimmed vacuole myopathy" sparing the quadriceps. A unique disorder in Iranian Jews. J Neurol Sci. 1984;64(1):33–43. doi: 10.1016/0022-510X(84)90053-4. - DOI - PubMed
    1. Neudecker S, Krasnianski M, Bahn E, Zierz S. Rimmed vacuoles in facioscapulohumeral muscular dystrophy: a unique ultrastructural feature. Acta Neuropathol. 2004;108(3):257–259. - PubMed
    1. Hauser MA, Horrigan SK, Salmikangas P, Torian UM, Viles KD, Dancel R, Tim RW, Taivainen A, Bartoloni L, Gilchrist JM, Stajich JM, Gaskell PC, Gilbert JR, Vance JM, Pericak-Vance MA, Carpen O, Westbrook CA, Speer MC. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet. 2000;9(14):2141–2147. doi: 10.1093/hmg/9.14.2141. - DOI - PubMed
    1. Moreira ES, Vainzof M, Marie SK, Sertie AL, Zatz M, Passos-Bueno MR. The seventh form of autosomal recessive limb-girdle muscular dystrophy is mapped to 17q11-12. Am J Hum Genet. 1997;61(1):151–159. doi: 10.1086/513889. - DOI - PMC - PubMed
    1. Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M, Sadeh M, Grabov-Nardini G, Shmilevich I, Friedmann A, Karpati G, Bradley WG, Baumbach L, Lancet D, Asher EB, Beckmann JS, Argov Z, Mitrani-Rosenbaum S. The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet. 2001;29(1):83–87. doi: 10.1038/ng718. - DOI - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources