Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 22;6(1):247.
doi: 10.1186/1556-276X-6-247.

Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles

Affiliations

Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles

Pramod Warrier et al. Nanoscale Res Lett. .

Abstract

A one-parameter model is presented for the thermal conductivity of nanofluids containing dispersed metallic nanoparticles. The model takes into account the decrease in thermal conductivity of metal nanoparticles with decreasing size. Although literature data could be correlated well using the model, the effect of the size of the particles on the effective thermal conductivity of the nanofluid could not be elucidated from these data. Therefore, new thermal conductivity measurements are reported for six nanofluids containing silver nanoparticles of different sizes and volume fractions. The results provide strong evidence that the decrease in the thermal conductivity of the solid with particle size must be considered when developing models for the thermal conductivity of nanofluids.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Size dependent thermal conductivity of copper. The solid line represents the thermal conductivity of copper nanoparticles calculated using Equations 3 and 5. The dashed line represents the bulk thermal conductivity of copper at 298 K. Data points are for copper thin films [18]
Figure 2
Figure 2
SEM/TEM images of the silver nanoparticles provided by Nanostructured and Amorphous Materials, Inc. (Los Alamos, NM, USA). (a) 20 nm, (b) 30-50 nm, and (c) 80 nm
Figure 3
Figure 3
Effect of particle size on the thermal conductivity of nanofluids containing silver nanoparticles. Points (1% black square, 2% black circle) represent experimental data of this work. Dashed (1% ― ―, 2% ----) and solid lines represent calculated values assuming size dependence and without size dependence, respectively

References

    1. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79:2252. doi: 10.1063/1.1408272. - DOI
    1. Eastman JA, Choi SUS, Li S, Yu W, Thompson W. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718. doi: 10.1063/1.1341218. - DOI
    1. Kang HU, Kim SH, Oh JM. Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transfer. 2006;19:181. doi: 10.1080/08916150600619281. - DOI
    1. Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T. Thermal conductivity of naked and monolayer protected metal nanoparticles based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83:2931. doi: 10.1063/1.1602578. - DOI
    1. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58. doi: 10.1016/S0142-727X(99)00067-3. - DOI

LinkOut - more resources