Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Oct;178(2):373-83.
doi: 10.1016/0042-6822(90)90334-n.

Complementation of a vesicular stomatitis virus glycoprotein G mutant with wild-type protein expressed from either a bovine papilloma virus or a vaccinia virus vector system

Affiliations

Complementation of a vesicular stomatitis virus glycoprotein G mutant with wild-type protein expressed from either a bovine papilloma virus or a vaccinia virus vector system

E J Lefkowitz et al. Virology. 1990 Oct.

Abstract

Using a complementation assay, we have evaluated the potential of two eukaryotic expression systems to produce functional virus proteins. The first expression system was based on a bovine papilloma virus (BPV) eukaryotic expression vector which contained a copy of the gene for the membrane glycoprotein G of vesicular stomatitis virus (VSV). This vector was transfected into a mouse cell line, and transformed cell clones constitutively expressing VSV G protein were selected. These cell clones were then screened for their ability to support the replication of a temperature-sensitive G mutant of VSV (tsO45) at the permissive and nonpermissive temperatures. A 100-fold increase in tsO45 titer was observed in some of the G protein-producing cell lines in comparison with nonproducing cells. These results were compared with complementation by VSV G protein expressed from a second expression system utilizing a vaccinia virus (VV) recombinant which produced bacteriophage T7 RNA polymerase. T7 RNA polymerase expressed in cells infected with the vaccinia recombinant produced VSV G transcripts from a plasmid which had been transfected into these cells. This plasmid contained the VSV G gene cloned between T7 RNA polymerase initiation and termination signals. VSV G protein expressed by this system was able to complement tsO45 replication at the nonpermissive temperature, and yielded much greater levels of complemented virus than the BPV system. When calcium phosphate-mediated transfection was used to introduce the VSV G plasmid vector into cells infected with the VV recombinant, a complementation efficiency as high as 1500-fold was obtained. Using lipofectin-mediated transfection, a 15,000-fold increase in virus titer could be obtained in G protein-producing cells in contrast to nonproducing cells. At the nonpermissive temperature, yields of temperature-sensitive virus were within 10-fold of the yields obtained at the permissive temperature. Virus produced in this system was shown to be a pseudotype which contained wild-type G protein in the viral envelope but still maintained the temperature-sensitive genotype. This expression system will be used to study the extent to which the integrity of the G coding sequence of wild-type VSV might be altered in the absence of selection pressure for functional G protein during VSV replication.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources