Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May 24;1(1):20.
doi: 10.1186/2045-3701-1-20.

Role of dendritic cells in the induction of regulatory T cells

Affiliations

Role of dendritic cells in the induction of regulatory T cells

Rahul Kushwah et al. Cell Biosci. .

Abstract

Dendritic cells (DCs) play a key role in initiating immune responses and maintaining immune tolerance. In addition to playing a role in thymic selection, DCs play an active role in tolerance under steady state conditions through several mechanisms which are dependent on IL-10, TGF-β, retinoic acid, indoleamine-2,3,-dioxygenase along with vitamin D. Several of these mechanisms are employed by DCs in induction of regulatory T cells which are comprised of Tr1 regulatory T cells, natural and inducible foxp3+ regulatory T cells, Th3 regulatory T cells and double negative regulatory T cells. It appears that certain DC subsets are highly specialized in inducing regulatory T cell differentiation and in some tissues the local microenvironment plays a role in driving DCs towards a tolerogenic response. In this review we discuss the recent advances in our understanding of the mechanisms underlying DC driven regulatory T cell induction.

PubMed Disclaimer

Figures

Figure 1
Figure 1
DCs drive differentiation of Tr1 regulatory T cells. DCs secrete IL-27, IL-10 and TGF-β1, which induce AhR and c-maf in T cells. AhR and c-maf physically associate with each other and activate IL-10 and IL-21 promoters, driving Tr1 differentiation. IL-27 suppresses production of Th17 inducing cytokines such as IL-1β, IL-6 and IL-23 and drives Tr1 differentiation. IFN-γ suppresses Th17 inducing osteoprotegerin (OPG) and drives IL-27 production, thereby promoting Tr1 differentiation. Furthermore, PD-1/PDL-1 signaling and bacterial peptides along with vasoactive intestinal peptide (VIP) drive IL-10 production which also induces Tr1 differentiation. Moreover, ICOS/ICOSL signalling as well as TGF-β production by DCs has also been implicated in driving Tr1 differentiation.
Figure 2
Figure 2
DCs drive differentiation of foxp3+ inducible regulatory T cells. (iTregs). DCs secrete TGF-β, which induces foxp3 in naive T cells, driving differentiation of naive T cells into iTregs. Activation of AhR and TLR9 drives induction of IDO, which catalyzes tryptophan metabolism. Tryptophan metabolites promote iTreg generation through induction of TGF-β production and suppression of Th17 inducing cytokine, IL-6. Furthermore, uptake of apoptotic DCs by viable DCs along with exposure to haptens, glucocorticoids and UV radiation also induces TGF-β production, which drives iTreg differentiation. Other signals such as RANK/RANKL signalling by vitamin D treated keratinocytes and treatment of DCs with vasoactive intestinal peptide (VIP), hepatocyte growth factor (HGF) and prostaglandin-D2 (PGD2) also promote iTreg differentiation. Moreover, retinoic acid promotes iTreg differentiation by suppressing cytokines which are inhibitory to iTreg differentiation and targeting of antigen to DEC205 drives iTreg differentiation through a TGF-β dependent mechanism.

References

    1. Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, Voehringer D. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med. 2009;206:549–559. doi: 10.1084/jem.20082394. - DOI - PMC - PubMed
    1. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T, Nomura T. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27. doi: 10.1111/j.0105-2896.2006.00427.x. - DOI - PubMed
    1. Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S, Kumar D, Burns EJ, Sherr DH, Weiner HL, Kuchroo VK. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol. 2010;11:854–861. doi: 10.1038/ni.1912. - DOI - PMC - PubMed
    1. Marshall NB, Kerkvliet NI. Dioxin and immune regulation: emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann N Y Acad Sci. 2010;1183:25–37. doi: 10.1111/j.1749-6632.2009.05125.x. - DOI - PMC - PubMed
    1. Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, Kuchroo VK, Oukka M, Weiner HL. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol. 2007;8:1380–1389. doi: 10.1038/ni1541. - DOI - PubMed

LinkOut - more resources