Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov;179(1):41-50.
doi: 10.1016/0042-6822(90)90271-r.

Selective inhibition of human cytomegalovirus DNA synthesis by (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] and 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG)

Affiliations

Selective inhibition of human cytomegalovirus DNA synthesis by (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] and 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG)

J Neyts et al. Virology. 1990 Nov.

Abstract

The novel acyclic nucleoside phosphonate, (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC], is a potent and selective inhibitor of human cytomegalovirus (CMV) replication in cell culture. (S)-HPMPC inhibits CMV DNA synthesis in a concentration-dependent manner within the concentration range of 0.04-4 micrograms/ml. At 4 micrograms/ml, viral DNA synthesis is completely suppressed. (S)-HPMPC proved more inhibitory to CMV replication and CMV DNA synthesis than 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG, ganciclovir), the current drug of choice for the treatment of CMV infections. Both compounds affected cell proliferation and cellular DNA synthesis only at a concentration that was 100- to 500-fold higher than the antivirally effective concentrations. In accord with the postulated target (viral DNA synthesis) for its antiviral action, (S)-HPMPC did not prevent immediate early antigen expression in CMV-infected cells. A limited exposure time (as short as 6 hr postinfection) of the CMV-infected cells to (S)-HPMPC sufficed to afford a pronounced and prolonged inhibition of viral DNA synthesis and virus replication. This gives (S)-HPMPC a definite advantage over DHPG, which only afforded a weak and transient inhibition of CMV DNA synthesis and virus replication after it had been exposed to the cells for a short exposure time. The long-lasting antiviral action of (S)-HPMPC is a unique property that opens new therapeutic modalities for the treatment of virus infections.

PubMed Disclaimer

Publication types

LinkOut - more resources