A new drug design targeting the adenosinergic system for Huntington's disease
- PMID: 21713039
- PMCID: PMC3119665
- DOI: 10.1371/journal.pone.0020934
A new drug design targeting the adenosinergic system for Huntington's disease
Abstract
Background: Huntington's disease (HD) is a neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The expanded CAG repeats are translated into polyglutamine (polyQ), causing aberrant functions as well as aggregate formation of mutant Htt. Effective treatments for HD are yet to be developed.
Methodology/principal findings: Here, we report a novel dual-function compound, N(6)-(4-hydroxybenzyl)adenine riboside (designated T1-11) which activates the A(2A)R and a major adenosine transporter (ENT1). T1-11 was originally isolated from a Chinese medicinal herb. Molecular modeling analyses showed that T1-11 binds to the adenosine pockets of the A(2A)R and ENT1. Introduction of T1-11 into the striatum significantly enhanced the level of striatal adenosine as determined by a microdialysis technique, demonstrating that T1-11 inhibited adenosine uptake in vivo. A single intraperitoneal injection of T1-11 in wildtype mice, but not in A(2A)R knockout mice, increased cAMP level in the brain. Thus, T1-11 enters the brain and elevates cAMP via activation of the A(2A)R in vivo. Most importantly, addition of T1-11 (0.05 mg/ml) to the drinking water of a transgenic mouse model of HD (R6/2) ameliorated the progressive deterioration in motor coordination, reduced the formation of striatal Htt aggregates, elevated proteasome activity, and increased the level of an important neurotrophic factor (brain derived neurotrophic factor) in the brain. These results demonstrate the therapeutic potential of T1-11 for treating HD.
Conclusions/significance: The dual functions of T1-11 enable T1-11 to effectively activate the adenosinergic system and subsequently delay the progression of HD. This is a novel therapeutic strategy for HD. Similar dual-function drugs aimed at a particular neurotransmitter system as proposed herein may be applicable to other neurotransmitter systems (e.g., the dopamine receptor/dopamine transporter and the serotonin receptor/serotonin transporter) and may facilitate the development of new drugs for other neurodegenerative diseases.
Conflict of interest statement
Figures






References
-
- The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993;72:971–983. - PubMed
-
- Chiang MC, Chen HM, Lee YH, Chang HH, Wu YC, et al. Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Hum Mol Genet. 2007;16:483–498. - PubMed
-
- Panov AV, Lund S, Greenamyre JT. Ca2+-induced permeability transition in human lymphoblastoid cell mitochondria from normal and Huntington's disease individuals. Mol Cell Biochem. 2005;269:143–152. - PubMed
-
- Brusa L, Orlacchio A, Moschella V, Iani C, Bernardi G, et al. Treatment of the symptoms of Huntington's disease: preliminary results comparing aripiprazole and tetrabenazine. Mov Disord. 2009;24:126–129. - PubMed
-
- Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical