Engineering Escherichia coli for efficient cellobiose utilization
- PMID: 21713510
- DOI: 10.1007/s00253-011-3434-9
Engineering Escherichia coli for efficient cellobiose utilization
Abstract
Escherichia coli normally cannot utilize the β-glucoside sugar cellobiose as a carbon and energy source unless a stringent selection pressure for survival is present. The cellobiose-utilization phenotype can be conferred by mutations in the two cryptic operons, chb and asc. In this study, the cellobiose-utilization phenotype was conferred to E. coli by replacing the cryptic promoters of these endogenous operons with a constitutive promoter. Evolutionary adaptation of the engineered strain CP12CHBASC by repeated subculture in cellobiose-containing minimal medium led to an increase in the rate of cellobiose uptake and cell growth on cellobiose. An efficient cellobiose-metabolizing E. coli strain would be of great importance over glucose-metabolizing E. coli for a simultaneous saccharification and fermentation process, as the cost of the process would be reduced by eliminating one of the three enzymes needed to hydrolyze cellulose into simple sugars.
Similar articles
-
Novel Functions and Regulation of Cryptic Cellobiose Operons in Escherichia coli.PLoS One. 2015 Jun 29;10(6):e0131928. doi: 10.1371/journal.pone.0131928. eCollection 2015. PLoS One. 2015. PMID: 26121029 Free PMC article.
-
Engineered Escherichia coli capable of co-utilization of cellobiose and xylose.Enzyme Microb Technol. 2012 Jan 5;50(1):1-4. doi: 10.1016/j.enzmictec.2011.10.001. Epub 2011 Oct 18. Enzyme Microb Technol. 2012. PMID: 22133432
-
Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose.Mol Microbiol. 2007 Dec;66(6):1382-95. doi: 10.1111/j.1365-2958.2007.05999.x. Epub 2007 Nov 19. Mol Microbiol. 2007. PMID: 18028317
-
Carbon source regulation of antibiotic production.J Antibiot (Tokyo). 2010 Aug;63(8):442-59. doi: 10.1038/ja.2010.78. Epub 2010 Jul 28. J Antibiot (Tokyo). 2010. PMID: 20664603 Review.
-
Selection, adaptation, and bacterial operons.Genome. 1989;31(1):265-71. doi: 10.1139/g89-044. Genome. 1989. PMID: 2687097 Review.
Cited by
-
Heterologous expression of plant cell wall degrading enzymes for effective production of cellulosic biofuels.J Biomed Biotechnol. 2012;2012:405842. doi: 10.1155/2012/405842. Epub 2012 Jul 15. J Biomed Biotechnol. 2012. PMID: 22911272 Free PMC article. Review.
-
Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria.Metab Eng. 2023 Jan;75:68-77. doi: 10.1016/j.ymben.2022.10.005. Epub 2022 Oct 29. Metab Eng. 2023. PMID: 36404524 Free PMC article.
-
Development of a Genome-Scale Metabolic Model and Phenome Analysis of the Probiotic Escherichia coli Strain Nissle 1917.Int J Mol Sci. 2021 Feb 20;22(4):2122. doi: 10.3390/ijms22042122. Int J Mol Sci. 2021. PMID: 33672760 Free PMC article.
-
Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture.Biotechnol Biofuels. 2014 Aug 20;7(1):119. doi: 10.1186/s13068-014-0119-5. eCollection 2014. Biotechnol Biofuels. 2014. PMID: 25184001 Free PMC article.
-
Engineering of a new Escherichia coli strain efficiently metabolizing cellobiose with promising perspectives for plant biomass-based application design.Metab Eng Commun. 2020 Dec 19;12:e00157. doi: 10.1016/j.mec.2020.e00157. eCollection 2021 Jun. Metab Eng Commun. 2020. PMID: 33457204 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous