Sodium metabisulfite-induced polymerization of sickle cell hemoglobin incubated in the extracts of three medicinal plants (Anacardium occidentale, Psidium guajava, and Terminalia catappa)
- PMID: 21716622
- PMCID: PMC3113351
- DOI: 10.4103/0973-1296.80670
Sodium metabisulfite-induced polymerization of sickle cell hemoglobin incubated in the extracts of three medicinal plants (Anacardium occidentale, Psidium guajava, and Terminalia catappa)
Abstract
Background: The exploitation and utilization of vast varieties of herbal extracts may serve as alternative measures to deter aggregation of deoxygenated sickle cell hemoglobin (deoxyHbS) molecules.
Objective: The present in vitro study ascertained the capacity of three medicinal plants, namely, Anacardium occidentale, Psidium guajava, and Terminalia catappa, to alter polymerization of HbS.
Materials and methods: Spectrophotometric method was used to monitor the level of polymerization of hemolysate HbS molecules treated with sodium metabisulfite (Na(2) S(2) O(5)) at a regular interval of 30 s for a period of 180 s in the presence of separate aqueous extracts of A. occidentale, P. guajava, and T. catappa. At time intervals of 30 s, the level of polymerization was expressed as percentage of absorbance relative to the control sample at the 180th s.
Results: Although extracts of the three medicinal plants caused significant (P < 0.05) reduction in polymerization of deoxyHbS molecules, the corresponding capacity in this regard diminished with increase in incubation time. Aqueous extract of P. guajava exhibited the highest capacity to reduced polymerization of deoxyHbS molecules. Whereas at t > 60 s, extract concentration of 400 mg% of A. occidentale activated polymerization of deoxyHbS molecules by 6.23±1.34, 14.53±1.67, 21.15±1.89, and 24.42±1.09%, 800 mg% of T. catappa at t > 30 s gave values of 2.50±1.93, 5.09±1.96, 10.00±0.99, 15.38±1.33, and 17.31±0.97%.
Conclusion: The capacity of the three medicinal plants to interfere with polymerization of deoxyHbS molecules depended on the duration of incubation and concentration of the extracts.
Keywords: A. occidentale; DeoxyHbS; P. guajava; Polymerization; T. catappa.
Conflict of interest statement
Figures



Similar articles
-
Membrane stability of sickle erythrocytes incubated in extracts of three medicinal plants: Anacardium occidentale, Psidium guajava, and Terminalia catappa.Pharmacogn Mag. 2011 Apr;7(26):121-5. doi: 10.4103/0973-1296.80669. Pharmacogn Mag. 2011. PMID: 21716621 Free PMC article.
-
Medicinal plant extracts protect epithelial cells from infection and DNA damage caused by colibactin-producing Escherichia coli, and inhibit the growth of bacteria.J Appl Microbiol. 2021 Mar;130(3):769-785. doi: 10.1111/jam.14817. Epub 2020 Aug 16. J Appl Microbiol. 2021. PMID: 32767847
-
Laboratory evaluation of the hypoglycemic effect of Anacardium occidentale Linn (Anacardiaceae) stem-bark extracts in rats.Methods Find Exp Clin Pharmacol. 2003 Apr;25(3):199-204. doi: 10.1358/mf.2003.25.3.769640. Methods Find Exp Clin Pharmacol. 2003. PMID: 12743624
-
Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review.J Ethnopharmacol. 2016 May 26;184:58-71. doi: 10.1016/j.jep.2016.02.034. Epub 2016 Feb 27. J Ethnopharmacol. 2016. PMID: 26924564 Review.
-
Psidium guajava L., from ethnobiology to scientific evaluation: Elucidating bioactivity against pathogenic microorganisms.J Ethnopharmacol. 2016 Dec 24;194:1140-1152. doi: 10.1016/j.jep.2016.11.017. Epub 2016 Nov 11. J Ethnopharmacol. 2016. PMID: 27845266 Review.
Cited by
-
Search for antisickling agents from plants.Pharmacogn Rev. 2013 Jan;7(13):53-60. doi: 10.4103/0973-7847.112849. Pharmacogn Rev. 2013. PMID: 23922457 Free PMC article.
-
Rational Drug Design of Peptide-Based Therapies for Sickle Cell Disease.Molecules. 2019 Dec 12;24(24):4551. doi: 10.3390/molecules24244551. Molecules. 2019. PMID: 31842406 Free PMC article. Review.
-
ATR1 Angiotensin II Receptor Reduces Hemoglobin S Polymerization, Phosphatidylserine Exposure, and Increases Deformability of Sickle Cell Disease Erythrocytes.Cell Biochem Biophys. 2022 Dec;80(4):711-721. doi: 10.1007/s12013-022-01096-y. Epub 2022 Sep 29. Cell Biochem Biophys. 2022. PMID: 36175813
-
Smartphone-based sickle cell disease detection and monitoring for point-of-care settings.Biosens Bioelectron. 2020 Oct 1;165:112417. doi: 10.1016/j.bios.2020.112417. Epub 2020 Jul 9. Biosens Bioelectron. 2020. PMID: 32729535 Free PMC article.
-
A portable impedance microflow cytometer for measuring cellular response to hypoxia.Biotechnol Bioeng. 2021 Oct;118(10):4041-4051. doi: 10.1002/bit.27879. Epub 2021 Jul 23. Biotechnol Bioeng. 2021. PMID: 34232511 Free PMC article.
References
-
- Taylor L. The Healing Power of Rainforest Herbs. 2005. Available from: http://www.rain-tree.com/book2.htm. [retrieved on 2010 Aug 16]
-
- Bicalho B, Rezende CM. Volatile compounds of cashew apple (Anacardium occidentale L.) Z. Naturforsch. 2001;56:35–9. - PubMed
-
- Mota ML, Thomas G, Barbosa-filho JM. Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. J Ethnopharmacol. 1985;13:289–300. - PubMed
-
- Kudi AC, Umoh JU, Eduvic LO, Getu J. Screening of some Nigerian medicinal plants for antibacterial activity. J Ethanopharm. 1999;67:225–8. - PubMed
-
- Kubo I, Kinst-Hori I, Yokokawa Y. Tyrosinase inhibitors from Anacardium occidentale fruits. J Nat Prod. 1994;57:545–51. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources