Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Jul 2;12(1):89.
doi: 10.1186/1465-9921-12-89.

Real time analysis of β(2)-adrenoceptor-mediated signaling kinetics in human primary airway smooth muscle cells reveals both ligand and dose dependent differences

Affiliations
Comparative Study

Real time analysis of β(2)-adrenoceptor-mediated signaling kinetics in human primary airway smooth muscle cells reveals both ligand and dose dependent differences

Charlotte K Billington et al. Respir Res. .

Abstract

Background: β2-adrenoceptor agonists elicit bronchodilator responses by binding to β2-adrenoceptors on airway smooth muscle (ASM). In vivo, the time between drug administration and clinically relevant bronchodilation varies significantly depending on the agonist used. Our aim was to utilise a fluorescent cyclic AMP reporter probe to study the temporal profile of β2-adrenoceptor-mediated signaling induced by isoproterenol and a range of clinically relevant agonists in human primary ASM (hASM) cells by using a modified Epac protein fused to CFP and a variant of YFP.

Methods: Cells were imaged in real time using a spinning disk confocal system which allowed rapid and direct quantification of emission ratio imaging following direct addition of β2-adrenoceptor agonists (isoproterenol, salbutamol, salmeterol, indacaterol and formoterol) into the extracellular buffer. For pharmacological comparison a radiolabeling assay for whole cell cyclic AMP formation was used.

Results: Temporal analysis revealed that in hASM cells the β2-adrenoceptor agonists studied did not vary significantly in the onset of initiation. However, once a response was initiated, significant differences were observed in the rate of this response with indacaterol and isoproterenol inducing a significantly faster response than salmeterol. Contrary to expectation, reducing the concentration of isoproterenol resulted in a significantly faster initiation of response.

Conclusions: We conclude that confocal imaging of the Epac-based probe is a powerful tool to explore β2-adrenoceptor signaling in primary cells. The ability to analyse the kinetics of clinically used β2-adrenoceptor agonists in real time and at a single cell level gives an insight into their possible kinetics once they have reached ASM cells in vivo.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Isoproterenol-induced changes in cyclic AMP activity in a single hASM cell imaged via confocal microscopy using the altered emission profile of CFP-Epac(dDEP,CD)-VENUS as a readout. CFP-Epac(dDEP,CD)-VENUS expression 48 hours post-transfection is shown in panel A (CFP excited with 440 nm and 480 nm CFP emission fluorescence recorded). Panel B shows uncorrected FRET in the same cell under basal conditions (CFP excited with 440 nm and 535 nm FRET emission fluorescence recorded). Panel C is a representative trace of the altered emission ratio (essentially a change in FRET) in real time in response to 10 μM isoproterenol (+ Iso).
Figure 2
Figure 2
Cyclic AMP activation induced by a range of doses of isoproterenol in hASM cells using (A) CFP-Epac(dDEP,CD)-VENUS activation or (B) 3H-cyclic AMP formation as a readout. (A) For Epac-based studies single hASM cells expressing CFP-Epac(dDEP,CD)-VENUS were excited at 440 nm and the emission ratio (470/535) changes collected in real time. The maximal ratio was recorded and plotted. Data are expressed as fold over basal. Each data point represents the mean (± SEM) of 3-9 separate experiments. (B) For studies investigating 3H-cyclic AMP formation, monolayers of hASM cells in 24 well plates were labelled with 3H-adenine for 2 hours and then exposed to the appropriate concentrations of isoproterenol for 5 minutes. The reaction was terminated by addition of hydrochloric acid and total 3H-labelled cyclic AMP was collected via column-based separation and quantified by scintillation counting [13]. Data are expressed as fold over basal. Each data point represents the mean (± SEM) of 3-6 experiments.
Figure 3
Figure 3
Cyclic AMP activation induced by single doses of a range of β2-adrenoceptor agonists in hASM cells using (A) CFP-Epac(dDEP,CD)-VENUS activation or (B) 3H-cyclic AMP formation as a readout. β2-adrenoceptor agonists studied were isoproterenol (10 μM), salbutamol (1 μM), salmeterol (100 nM), indacaterol (1 μM) and formoterol (1 μM). (A) For FRET-based studies single hASM cells expressing CFP-Epac(dDEP,CD)-VENUS were excited at 440 nm and the emission ratio (470/535) changes collected in real time. The maximum ratio observed was recorded and plotted. Data are expressed as fold over basal. Each data point represents the mean (± SEM) of 6-16 separate experiments. **denotes P < 0.01. (B) For studies investigating 3H-cyclic AMP formation, monolayers of hASM cells in 24 well plates were labelled with 3H-adenine for 2 hours and then exposed to the appropriate concentrations of β2-adrenoceptor agonist for 5 minutes. The reaction was terminated by addition of hydrochloric acid and total 3H-labelled cyclic AMP was collected via column-based separation and quantified by scintillation counting [13]. Data are expressed as fold over basal. Each data point represents the mean (± SEM) of 3-9 experiments. * denotes P < 0.05, **denotes P < 0.01.
Figure 4
Figure 4
Time taken for a range of β2-adrenoceptor agonists to (A) initiate an increase in CFP-Epac(dDEP,CD)-VENUS activation and (B) to induce a maximal response c.f. initiation. The time between response initiation and maximal response is shown in C. The labelled trace in D depicts how these data were obtained from real time traces. The β2-adrenoceptor agonists studied were isoproterenol (10 μM), salbutamol (1 μM), salmeterol (100 nM), indacaterol (1 μM) and formoterol (1 μM). Single hASM cells expressing CFP-Epac(dDEP,CD)-VENUS were excited at 440 nm and the emission ratio (470/535) changes collected in real time. Each data point represents the mean (± SEM) of 6-19 experiments. * denotes P < 0.05, ***denotes P < 0.001.
Figure 5
Figure 5
Re-analysis of data shown in figure 4 concentrating on the response observed in the first 30 seconds after initiation i.e. at a timepoint whereby probe saturation has not occurred. Data was analysed via (A) Area Under the Curve (AUC). B outlines the region utilised for these additional analyses. Each data point represents the mean (± SEM) of 6-19 experiments.* denotes P < 0.05, ** denotes P < 0.01.
Figure 6
Figure 6
Time taken for a range of concentrations of the β2-adrenoceptor agonist isoproterenol (10-8M-10-5M) to initiate an increase in CFP-Epac(dDEP,CD)-VENUS activation. These data were obtained from real time traces comparable to those depicted in Figure 4D. Single hASM cells expressing CFP-Epac(dDEP,CD)-VENUS were excited at 440 nm and the emission ratio (470/535) changes collected in real time. Each data point represents the mean (± SEM) of 4-19 experiments. * denotes P < 0.05.

References

    1. Hall IP TA. In: Asthma. 3. Clark TH GS, Lee TH, editor. London: Chapman and Hall; 1992. Beta-agonists; pp. 341–365.
    1. Sears MR, Lotvall J. Past, present and future-beta2-adrenoceptor agonists in asthma management. Respir Med. 2005;99(2):152–170. doi: 10.1016/j.rmed.2004.07.003. - DOI - PubMed
    1. Cazzola M, Matera MG. Novel long-acting bronchodilators for COPD and asthma. Br J Pharmacol. 2008;155(3):291–299. - PMC - PubMed
    1. Billington CK, Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res. 2003;4(1):2. doi: 10.1186/rr195. - DOI - PMC - PubMed
    1. Roscioni SS, Kistemaker LE, Menzen MH, Elzinga CR, Gosens R, Halayko AJ, Meurs H, Schmidt M. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells. Respir Res. 2009;10:88. doi: 10.1186/1465-9921-10-88. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources