Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 6;14(1):123-30.
doi: 10.1016/j.cmet.2011.04.010.

Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor

Affiliations
Free article

Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor

Adam J Rose et al. Cell Metab. .
Free article

Abstract

Systemic bile acid (BA) homeostasis is a critical determinant of dietary fat digestion, enterohepatic function, and postprandial thermogenesis. However, major checkpoints for the dynamics and the molecular regulation of BA homeostasis remain unknown. Here we show that hypothalamic-pituitary-adrenal (HPA) axis impairment in humans and liver-specific deficiency of the glucocorticoid receptor (GR) in mice disrupts the normal changes in systemic BA distribution during the fasted-to-fed transition. Fasted mice with hepatocyte-specific GR knockdown had smaller gallbladder BA content and were more susceptible to developing cholesterol gallstones when fed a cholesterol-rich diet. Hepatic GR deficiency impaired liver BA uptake/transport via lower expression of the major hepatocyte basolateral BA transporter, Na(+)-taurocholate transport protein (Ntcp/Slc10a1), which affected dietary fat absorption and brown adipose tissue activation. Our results demonstrate a role of the HPA axis in the endocrine regulation of BA homeostasis through the liver GR control of enterohepatic BA recycling.

PubMed Disclaimer

Publication types

MeSH terms

Substances