Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 15;145(10):3283-9.

Synergistic effect of murine cytomegalovirus on the induction of acute graft-vs-host disease involving MHC class I differences only. Analysis of in vitro T cell function

Affiliations
  • PMID: 2172381

Synergistic effect of murine cytomegalovirus on the induction of acute graft-vs-host disease involving MHC class I differences only. Analysis of in vitro T cell function

C S Via et al. J Immunol. .

Abstract

The development of acute graft-vs-host disease (GVHD) is a common outcome after the injection of fully MHC disparate parental T cells into unirradiated F1 mice. Murine cytomegalovirus (MCMV) infection has been previously shown to augment the development of acute GVHD in the parent-into-F1 (P----F1) model, such that 10-fold fewer parental cells are required. In the present study, we have investigated the effect of MCMV infection on the induction of non-lethal GVHD that occurs in P----F1 combinations involving MHC class I only or class II only differences. Using P----F1 combinations involving either an H-2K only difference or an H-2D only difference, MCMV infection of F1 mice 3 days before the injection of parental spleen cells led to a profound T cell immunodeficiency that strongly resembled that observed in acute GVHD. Further studies examining the H-2K disparate P----F1 combination, C57Bl/6---- (C57Bl/6xB6.C-H-2bm1) F1 and combined MCMV infection showed that the immunodeficiency is characterized by a profound loss of in vitro Th cell production of IL-2 and an intrinsic defect in T effector function as shown by an inability of rIL-2 to restore defective CTL responses. Additional experiments in these mice revealed the presence of suppressor cells as well as significant parent-anti-F1 CTL activity possibly accounting for the suppressor effect. This pattern of immunodeficiency was not seen after the administration of either MCMV or MHC class I disparate parental cells alone. MCMV infection did not detectably alter the immunodeficiency observed in a P----F1 combination involving a MHC class II difference only. These results indicate that MCMV infection can alter the pattern of GVHD in the setting of an MHC class I disparity, but not in the setting of class II disparity, such that it resembles acute GVHD. These results may have relevance to the human transplant setting where intercurrent CMV infection has been associated with an adverse clinical outcome.

PubMed Disclaimer

Publication types

MeSH terms

Substances