Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 28;17(22):5602-12.
doi: 10.1088/0957-4484/17/22/013. Epub 2006 Oct 26.

Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals

Affiliations

Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals

Chun-Hao Tseng et al. Nanotechnology. .

Abstract

In this study, we present a novel method for preparing multi-walled carbon nanotubes (MWCNTs) grafted with a poly(2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester) (GMA-IDA)-cadmium sulfide complex (CNTs-G-ICdS complex) through plasma-induced grafting polymerization. The characteristics of the MWCNTs after being grafted with the GMA-IDA polymer were monitored by a Fourier transform infrared (FT-IR) spectroscope. Scanning electronic microscopy (SEM) shows that the amount of GMA-IDA grafted onto the MWCNTs increases with the concentration of GMA-IDA monomer. The complex resulting from GMA-IDA polymer grafting onto the MWCNTs, CNTs-G-I (15%), shows excellent dispersion properties in aqueous solution and has high Zeta potential values over a wide range of pH values, from 2 to 12. Moreover, Raman spectroscopy was used to confirm the successful chemical modification of MWCNTs through the plasma treatment. The chelating groups, -N(CH(2)COO(-))(2) in the GMA-IDA polymer grafted on the surface of the CNTs-G-I, are the coordination sites for chelating cadmium ions, and are further used as nano-templates for the growth of CdS nanocrystals (quantum dots). Moreover, TEM microscopy reveals that the size of the CdS nanocrystals on the CNT surfaces increases with increasing S(2-) concentration. In addition, high resolution x-ray photoelectron (XPS) spectroscopy was used to characterize the functional groups on the surface of the MWCNTs after chemical modification by the plasma treatment and grafting with GMA-IDA polymer.

PubMed Disclaimer

LinkOut - more resources