Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010;6(1):Article 26.
doi: 10.2202/1557-4679.1260. Epub 2010 Aug 1.

A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome

Affiliations

A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome

Susan Gruber et al. Int J Biostat. 2010.

Abstract

Targeted maximum likelihood estimation of a parameter of a data generating distribution, known to be an element of a semi-parametric model, involves constructing a parametric model through an initial density estimator with parameter ɛ representing an amount of fluctuation of the initial density estimator, where the score of this fluctuation model at ɛ = 0 equals the efficient influence curve/canonical gradient. The latter constraint can be satisfied by many parametric fluctuation models since it represents only a local constraint of its behavior at zero fluctuation. However, it is very important that the fluctuations stay within the semi-parametric model for the observed data distribution, even if the parameter can be defined on fluctuations that fall outside the assumed observed data model. In particular, in the context of sparse data, by which we mean situations where the Fisher information is low, a violation of this property can heavily affect the performance of the estimator. This paper presents a fluctuation approach that guarantees the fluctuated density estimator remains inside the bounds of the data model. We demonstrate this in the context of estimation of a causal effect of a binary treatment on a continuous outcome that is bounded. It results in a targeted maximum likelihood estimator that inherently respects known bounds, and consequently is more robust in sparse data situations than the targeted MLE using a naive fluctuation model. When an estimation procedure incorporates weights, observations having large weights relative to the rest heavily influence the point estimate and inflate the variance. Truncating these weights is a common approach to reducing the variance, but it can also introduce bias into the estimate. We present an alternative targeted maximum likelihood estimation (TMLE) approach that dampens the effect of these heavily weighted observations. As a substitution estimator, TMLE respects the global constraints of the observed data model. For example, when outcomes are binary, a fluctuation of an initial density estimate on the logit scale constrains predicted probabilities to be between 0 and 1. This inherent enforcement of bounds has been extended to continuous outcomes. Simulation study results indicate that this approach is on a par with, and many times superior to, fluctuating on the linear scale, and in particular is more robust when there is sparsity in the data.

Keywords: TMLE; causal effect; targeted maximum likelihood estimation.

PubMed Disclaimer

References

    1. Dehejia RH, Wahba S. Propensity score matching methods for nonexperimental causal studies. The Review of Economics and Statistics. 2002;84:151–61. doi: 10.1162/003465302317331982. - DOI
    1. Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000;11(5):561–570. doi: 10.1097/00001648-200009000-00012. - DOI - PubMed
    1. McCullagh P. Quasi-likelihood functions. Annals of Statistics. 1983;11:59–67. doi: 10.1214/aos/1176346056. - DOI
    1. Robins JM, Rotnitzky A. Comment on the Bickel and Kwon article, “Inference for semiparametric models: Some questions and an answer”. Statistica Sinica. 2001;11(4):920–936.
    1. Robins JM, Rotnitzky A, van der Laan MJ. Comment on “On Profile Likelihood” by S.A. Murphy and A.W. van der Vaart. Journal of the American Statistical Association – Theory and Methods. 2000;450:431–435. doi: 10.2307/2669381. - DOI

Publication types