Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 8;17(33):9180-7.
doi: 10.1002/chem.201100317. Epub 2011 Jul 5.

Design and synthesis of iridium bis(carbene) complexes for efficient blue electrophosphorescence

Affiliations

Design and synthesis of iridium bis(carbene) complexes for efficient blue electrophosphorescence

Cheng-Han Hsieh et al. Chemistry. .

Abstract

Five iridium bis(carbene) complexes, [Ir(pmi)(2)(pypz)] (1), [Ir(mpmi)(2)(pypz)] (2), [Ir(fpmi)(2)(pypz)] (3), [Ir(fpmi)(2)(pyim)] (4), and [Ir(fpmi)(2)(tfpypz)] (5) (pmi=1-phenyl-3-methylimdazolin-2-ylidene-C,C(2'); fpmi=1-(4-fluorophenyl)-3-methylimdazolin-2-ylidene-C,C(2'); mpmi=1-(4-methyl-phenyl)-3-methylimdazolin-2-ylidene-C,C(2'); pypz=2-(1H-pyrazol-5-yl)pyridinato; pyim=2-(1H-imidazol-2-yl)pyridinato; and tfpypz=2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridinato), were synthesized and their structures were characterized by NMR spectroscopy, mass spectroscopy and X-ray diffraction. These complexes showed phosphorescent emission with the emission maxima between 453 and 490 nm. Various spectrophotometric measurements, cyclic voltammetric studies, and density functional theory (DFT) calculations show that, unlike most of the phosphorescent cyclometalated iridium complexes, the lowest unoccupied molecular orbital (LUMO) energy and the emissive state of these iridium complexes are mainly controlled by the N,N'-heteroaromatic (N^N) ligand. Despite the fact that the LUMO levels of these complexes are mainly on the N^N ligands, the efficiencies of the electroluminescent (EL) devices are very high. For example, the EL devices using [Ir(mpmi)(2)(pypz)], [Ir(fpmi)(2)(pypz)], and [Ir(fpmi)(2)(tfpypz)] as the dopant emitters exhibited light- to deep-blue electrophosphorescence with external quantum efficiencies of 15.2, 14.1, and 7.6% and Commission Internationale d'Énclairage (x,y) coordinates (CIE(x,y)) of (0.14, 0.27), (0.14, 0.18) and (0.14, 0.10), respectively.

PubMed Disclaimer

LinkOut - more resources