Activation of nitrite reductase from Escherichia coli K12 by oxidized nicotinamide-adenine dinucleotide
- PMID: 217343
- PMCID: PMC1186096
- DOI: 10.1042/bj1750495
Activation of nitrite reductase from Escherichia coli K12 by oxidized nicotinamide-adenine dinucleotide
Abstract
Nitrite reductase from Escherichia coli K12 requires the presence of NAD+, one of the products of the reduction of NO2-by NADH, for full activity. The effect is observed with both crude extracts and purified enzyme. NAD+ also acts as a product inhibitor at high concentrations, and plots of initial rate against NAD+ concentration are bell-shaped. The maximum occurs at about 1 mM-NAD+, but increases with increasing NADH concentration. In the presence of 1 mM-NAD+ and saturating NO2-(2mM) the Michaelis constant for NADH is about 16 micron. The Michaelis constant for NO2-is about 5 micron and is largely independent of the NAD+ concentration. Similar but more pronounced effects of NAD+ are observed with hydroxylamine as electron acceptor instead of NO2-. The maximum rate of NADH oxidation by hydroxylamine is about 5.4 times greater than the maximum rate of NADH oxidation by NO2- when assayed with the same volume of the same preparation of purified enzyme. The Michaelis constant for hydroxylamine is 5.3 mM, however, about 1000 times higher than for NO2-. These results are consistent with a mechanism in which the same enzyme-hydroxylamine complex occurs as an intermediate in both reactions.
Similar articles
-
The steady state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K12. The reduction of single-electron acceptors.Biochem J. 1982 May 1;203(2):505-10. doi: 10.1042/bj2030505. Biochem J. 1982. PMID: 6288003 Free PMC article.
-
The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction.Biochem J. 1981 Oct 1;199(1):171-8. doi: 10.1042/bj1990171. Biochem J. 1981. PMID: 6279095 Free PMC article.
-
Nitrite reductase of Escherichia coli specific for reduced nicotinamide adenine dinucleotide.J Bacteriol. 1966 Sep;92(3):628-34. doi: 10.1128/jb.92.3.628-634.1966. J Bacteriol. 1966. PMID: 4288493 Free PMC article.
-
Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase.Biochimie. 1984 Apr;66(4):259-89. doi: 10.1016/0300-9084(84)90005-1. Biochimie. 1984. PMID: 6331530 Review.
-
The nitrite oxidizing system of Nitrobacter winogradskyi.FEMS Microbiol Rev. 1988 Dec;4(4):259-70. doi: 10.1016/0378-1097(88)90246-7. FEMS Microbiol Rev. 1988. PMID: 2856189 Review.
Cited by
-
Positive allosteric feedback regulation of the stringent response enzyme RelA by its product.EMBO Rep. 2012 Sep;13(9):835-9. doi: 10.1038/embor.2012.106. Epub 2012 Jul 20. EMBO Rep. 2012. PMID: 22814757 Free PMC article.
-
Purification and properties of nitrite reductase from Escherichia coli K12.Biochem J. 1978 Nov 1;175(2):483-93. doi: 10.1042/bj1750483. Biochem J. 1978. PMID: 217342 Free PMC article.
-
NarK enhances nitrate uptake and nitrite excretion in Escherichia coli.J Bacteriol. 1991 Jun;173(11):3303-10. doi: 10.1128/jb.173.11.3303-3310.1991. J Bacteriol. 1991. PMID: 2045360 Free PMC article.
-
The steady state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K12. The reduction of single-electron acceptors.Biochem J. 1982 May 1;203(2):505-10. doi: 10.1042/bj2030505. Biochem J. 1982. PMID: 6288003 Free PMC article.
-
Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12.Biochem J. 1981 Mar 1;193(3):861-7. doi: 10.1042/bj1930861. Biochem J. 1981. PMID: 7030314 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases