Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Oct;24(5):423-8.
doi: 10.1097/WCO.0b013e32834959af.

Facioscapulohumeral muscular dystrophy: molecular pathological advances and future directions

Affiliations
Review

Facioscapulohumeral muscular dystrophy: molecular pathological advances and future directions

Jeffrey M Statland et al. Curr Opin Neurol. 2011 Oct.

Abstract

Purpose of review: Recent advances have provided a model for understanding the underlying molecular genetic changes in facioscapulohumeral muscular dystrophy (FSHD). This review will highlight our current understanding and future research directions.

Recent findings: FSHD typically results from contraction of a critical number of D4Z4 repeats in a macrosatellite repeat array on chromosome 4q35. Contraction leads to loss of DNA methylation and heterochromatin markers in the 4q35 D4Z4 region, resulting in relaxation of the chromatin structure and release of DUX4 repression. DUX4, a retrogene contained in the D4Z4 repeats, is normally epigenetically silenced in somatic cells. Stable expression of DUX4, however, can only occur in the presence of a permissive genetic background, which contains a polyadenylation signal sequence that stabilizes DUX4 mRNA. Expression of DUX4 mRNA and protein occurs at low frequency but in high abundance in FSHD myotube nuclei. DUX4 expression in transfection studies induces apoptosis and interferes with myogenesis.

Summary: FSHD results from a unique combination of genetic and epigenetic changes on 4q35 leading to release of repression of DUX4, causing disease in a toxic gain-of-function manner. Questions remain regarding the normal function of DUX4 and how expression of DUX4 in somatic cells leads to FSHD.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources