Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 7:10:183.
doi: 10.1186/1475-2875-10-183.

The influence of mosquito resting behaviour and associated microclimate for malaria risk

Affiliations

The influence of mosquito resting behaviour and associated microclimate for malaria risk

Krijn P Paaijmans et al. Malar J. .

Abstract

Background: The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors.

Presentation of hypothesis: If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor vs outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate.

Testing the hypothesis: Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude.

Implications of the hypothesis: Differences in indoor vs outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic overview of the gonotrophic cycle of mosquitoes that both feed (exophagic) and rest (exophilic) outdoors (left hand side of figure), or both feed (endophagic) and rest (endophilic) indoors (right hand side of figure). At these extremes, mosquitoes will spend the majority of their adult lives under dramatically different environmental conditions.

Similar articles

Cited by

References

    1. Craig MH, Snow RW, Le Sueur D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–111. doi: 10.1016/S0169-4758(99)01396-4. - DOI - PubMed
    1. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD. Climate warming and disease risks for terrestrial and marine biota. Science. 2002;296:2158–2162. doi: 10.1126/science.1063699. - DOI - PubMed
    1. Patz JA, Olson SH. Malaria risk and temperature: Influences from global climate change and local land use practices. Proc Natl Acad Sci USA. 2006;103:5635–5636. doi: 10.1073/pnas.0601493103. - DOI - PMC - PubMed
    1. Rogers DJ, Randolph SE. In: Global Mapping of Infectious Diseases: Methods, Examples and Emerging Applications (Advances in Parasitology) Hay SI, Graham A, Rogers DJ, editor. Vol. 62. San Diego: Elsevier; 2006. Climate change and vector-borne diseases; pp. 345–381. - PubMed
    1. Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA. 2010;107:15135–15139. doi: 10.1073/pnas.1006422107. - DOI - PMC - PubMed

Publication types