Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 25;265(33):20172-8.

Mechanisms of inhibition of herpes simplex virus type 2 growth by 28-mer phosphorothioate oligodeoxycytidine

Affiliations
  • PMID: 2173699
Free article

Mechanisms of inhibition of herpes simplex virus type 2 growth by 28-mer phosphorothioate oligodeoxycytidine

W Y Gao et al. J Biol Chem. .
Free article

Abstract

The 28-mer phosphorothioate oligodeoxycytidine (S-(dC)28) has been reported previously to be a strong inhibitor of herpes simplex virus type 2 (HSV-2) DNA polymerase and HSV-2 growth in cell culture. In this study, the mechanism of action of S-(dC)28 was studied. S-(dC)28 was found to interfere with the adsorption of HSV-1 and HSV-2 to HeLa cells. HSV-2 infection, but not HSV-1, was found to potentiate the uptake of S-(dC)28 into HeLa cells. The enhanced uptake reached a plateau at 6-9 h postinfection and appeared to be dose-dependent and saturable at concentrations higher than 1 microM. The amount of S-(dC)28 accumulated in HSV-2 infected cells was found to be 50 pmol/10(6) cells at 6 h postinfection, whereas no significant drug accumulation was found in uninfected cells. S-(dC)28 binding studies suggested that there are several types of tight binding sites associated with HSV-2 virions, which could play a role in the enhancement of S-(dC)28 uptake. Subcellular distribution studies showed that intracellular S-(dC)28 was associated with both nuclei and cytoplasm and remained intact. Mechanism studies suggested three different mechanisms which could be responsible for the anti-HSV-2 action of S-(dC)28; (i) S-(dC)28 could interfere with the uptake of HSV. (ii) HSV-2 infection enhances the uptake of S-(dC)28 into cells. (iii) S-(dC)28 inhibits HSV-2 DNA synthesis, possibly, by inhibiting the viral DNA polymerase. The unique mechanisms of anti-HSV action of S-(dC)28 suggest it could be a potential new agent in anti-HSV-2 chemotherapy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources