Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data
- PMID: 21737469
- PMCID: PMC3131116
- DOI: 10.1136/bmj.d3805
Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data
Abstract
Objective: To determine the clinical effectiveness of real time continuous glucose monitoring compared with self monitoring of blood glucose in type 1 diabetes.
Design: Meta-analysis of randomised controlled trials.
Data sources: Cochrane database for randomised controlled trials, Ovid Medline, Embase, Google Scholar, lists of papers supplied by manufacturers of continuous glucose monitors, and cited literature in retrieved articles. Studies reviewed Randomised controlled trials of two or more months' duration in men and non-pregnant women with type 1 diabetes that compared real time continuous glucose monitoring with self monitoring of blood glucose and where insulin delivery was the same in both arms. Analysis Two step meta-analysis of individual patient data with the primary outcome of final glycated haemoglobin (HbA(1c)) percentage and area under the curve of hypoglycaemia (glucose concentration <3.9 mmol/L) during either treatment, followed by one step metaregression exploring patient level determinants of HbA(1c) and hypoglycaemia.
Results: Six trials were identified, consisting of 449 patients randomised to continuous glucose monitoring and 443 to self monitoring of blood glucose. The overall mean difference in HbA(1c) for continuous glucose monitoring versus self monitoring of blood glucose was -0.30% (95% confidence interval -0.43% to -0.17%) (-3.0, -4.3 to -1.7 mmol/mol). A best fit regression model of determinants of final HbA(1c) showed that for every one day increase of sensor usage per week the effect of continuous glucose monitoring versus self monitoring of blood glucose increased by 0.150% (95% credibility interval -0.194% to -0.106%) (1.5, -1.9 to -1.1 mmol/mol) and every 1% (10 mmol/mol) increase in baseline HbA(1c) increased the effect by 0.126% (-0.257% to 0.0007%) (1.3, -2.6 to 0.0 mmol/mol). The model estimates that, for example, a patient using the sensor continuously would experience a reduction in HbA(1c) of about 0.9% (9 mmol/mol) when the baseline HbA(1c) is 10% (86 mmol/mol). The overall reduction in area under the curve of hypoglycaemia was -0.28 (-0.46 to -0.09), corresponding to a reduction in median exposure to hypoglycaemia of 23% for continuous glucose monitoring compared with self monitoring of blood glucose. In a best fit regression model, baseline area under the curve of hypoglycaemia was only weakly related to the effect of continuous glucose monitoring compared with self monitoring of blood glucose on hypoglycaemia outcome, and sensor usage was unrelated to hypoglycaemia at outcome.
Conclusions: Continuous glucose monitoring was associated with a significant reduction in HbA(1c) percentage, which was greatest in those with the highest HbA(1c) at baseline and who most frequently used the sensors. Exposure to hypoglycaemia was also reduced during continuous glucose monitoring. The most cost effective or appropriate use of continuous glucose monitoring is likely to be when targeted at people with type 1 diabetes who have continued poor control during intensified insulin therapy and who frequently use continuous glucose monitoring.
Conflict of interest statement
Competing interests: All authors have completed the ICMJE uniform disclosure form at
Figures





Comment in
-
Use of real-time continuous glucose monitoring versus traditional self-monitoring of blood glucose levels improves glycaemic control in patients with type 1 diabetes.Evid Based Nurs. 2012 Jan;15(1):7-8. doi: 10.1136/ebn.2011.100247. Epub 2011 Oct 19. Evid Based Nurs. 2012. PMID: 22011480 No abstract available.
References
-
- Mastrototaro JJ. The MiniMed continuous glucose monitoring system. Diabetes Technol Therapeut 2000;2:13-8. - PubMed
-
- Klonoff DC. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care 2005;28:1231-9. - PubMed
-
- Deiss D, Bollinder J, Riveline JP, Battelino T, Bosi E, Tubiana-Rufi N, et al. Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes Care 2006;29:2730-2. - PubMed
-
- Hirsch IB, Abelseth J, Bode BW, Fischer JS, Kaufman FR, Mastrototaro J, et al. Sensor-augmented insulin pump therapy: results of the first randomized treat-to-target study. Diabetes Technol Therapeut 2008;10:377-83. - PubMed
-
- Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 2008;359:1464-76. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous