Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2011 Jun;7(6):e1002134.
doi: 10.1371/journal.pgen.1002134. Epub 2011 Jun 30.

Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes

Affiliations
Meta-Analysis

Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes

Erin N Smith et al. PLoS Genet. 2011 Jun.

Abstract

Although a highly heritable and disabling disease, bipolar disorder's (BD) genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5×10(-7)). To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (±10 kb) that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Replication as a function of power in height meta-analysis.
Power to detect associations in test data sets was calculated based on observed effects in discovery subsets of the IBC height collection and is plotted against association at P<0.05 in the test data. Lines are smoothed splines indicating the proportion of SNPs that replicate at P<0.05 across varying power. Smaller subsets of the discovery data set are shown in rainbow colors.
Figure 2
Figure 2. SNPs near exons show a stronger enrichment at P<0.05 as a function of power.
For different classes of SNPs, the smoothed spline is shown for the proportion of SNPs showing association at P<0.05 in the GAIN+TGEN dataset as a function of power based on the WTCCC dataset.

References

    1. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–176. - PubMed
    1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–9367. - PMC - PubMed
    1. Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010;42:570–575. - PMC - PubMed
    1. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. Common SNPs explain a large proportion of the heritability for human height. Nature genetics. 2010;42:565–569. - PMC - PubMed
    1. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010 - PMC - PubMed

Publication types

Grants and funding