Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Nov 15;265(32):19594-9.

Conformational transitions of the H,K-ATPase studied with sodium ions as surrogates for protons

Affiliations
  • PMID: 2174045
Free article
Comparative Study

Conformational transitions of the H,K-ATPase studied with sodium ions as surrogates for protons

E C Rabon et al. J Biol Chem. .
Free article

Abstract

Following a recent demonstration that H,K-ATPase can active transport Na+ at a low rate (Polvani, C., Sachs, G., and Blostein, R. (1989) J. Biol. Chem. 264, 17854-17859), we have looked for and found effects of Na+ ions on the conformational state of gastric H,K-ATPase labeled with fluorescein isothiocyanate. Na+ ions reverse the K(+)-induced quench of the fluorescein fluorescence and somewhat enhance fluorescence in the absence of K+ ions. Equilibrium titrations of the cation effects show that Na+ and K+ ions are strictly competitive with apparent dissociation constants of KNa+ = 62 mM (n = 2) and KK+ = 6.6 mM (n = 2). The observations demonstrate that Na+ ions bind to and stabilize the high fluorescence E1 form of the protein while K+ ions stabilize the low fluorescence E2 form. Elevation of pH from 6.4 to 8.0 increased the apparent affinity of the Na+ ions from approximately 62 to 10.2 mM, consistent with competition between protons and Na+. The action of Na+ to stabilize the E1 form was used to measure the rate of the E2K----E1Na transition with a stopped-flow fluorimeter. The rate at pH 6.4 and 20 degrees C is 18.1 s-1. In addition the rate of the reverse conformational transition E1K----E2K has been measured at several K+ concentrations. From the hyperbolic dependence on K+ concentration a maximal rate of 211 +/- 32 s-1 and intrinsic K+ dissociation constant on E1 of 64.6 +/- 3.3 mM have been estimated. The kinetic and equilibrium data are self-consistent and thus support the proposed action of Na+ and K+ ions. Compared with Na,K-ATPase, the H,K-ATPase exhibits a lower affinity for Na+ on E1 and a much faster rate of the E2K----E1Na transition, but a similar affinity for K+ ions on E1 and rate of the transition E1K----E2K. The significance of the similarities and differences in cation specificity and rates of conformational changes of Na,K- and H,K-ATPases is discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources