Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 13;193(3):671-4.
doi: 10.1111/j.1432-1033.1990.tb19385.x.

Okadaic acid activates microtubule-associated protein kinase in quiescent fibroblastic cells

Affiliations
Free article

Okadaic acid activates microtubule-associated protein kinase in quiescent fibroblastic cells

Y Gotoh et al. Eur J Biochem. .
Free article

Abstract

Okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A, and is a strong tumor promoter that is not an activator of protein kinase C. Treatment of quiescent cultures of rat fibroblastic 3Y1 cells with okadaic acid induced marked activation of a kinase activity that phosphorylated microtubule-associated protein (MAP) 2 and myelin basic protein, but not histone or casein, in vitro. This activated kinase eluted at approximately 0.15 M NaCl on a DEAE-cellulose column and its apparent molecular mass was determined to be approximately 40 kDa by gel filtration. Detection of the kinase activity in polyacrylamide gels containing substrate proteins after sodium dodecyl sulfate gel electrophoresis revealed that the okadaic-acid-activated kinase activity resided mainly in two closely related polypeptides with apparent molecular mass approximately 40 kDa. The characteristics of this kinase were indistinguishable from those of the mitogen-activated MAP kinase in the same cells. The okadaic-acid-activated MAP kinase was deactivated by protein phosphatase 2A treatment in vitro. These results suggest that MAP kinase is negatively regulated by protein phosphatases 1 and/or 2A in quiescent cells and therefore can be activated by inhibiting these protein phosphatases. Interestingly, the okadaic-acid-induced activation of MAP kinase was transient and epidermal-growth-factor-induced activation was also transient, even in the presence of okadaic acid. These data may imply that protein phosphatases 1 and 2A are not involved in the deactivation of MAP kinase in cells.

PubMed Disclaimer

Publication types

LinkOut - more resources