Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 24;133(33):13138-50.
doi: 10.1021/ja203993p. Epub 2011 Aug 2.

Aryl C-H amination by diruthenium nitrides in the solid state and in solution at room temperature: experimental and computational study of the reaction mechanism

Affiliations

Aryl C-H amination by diruthenium nitrides in the solid state and in solution at room temperature: experimental and computational study of the reaction mechanism

Amanda Kae Musch Long et al. J Am Chem Soc. .

Abstract

Diruthenium azido complexes Ru(2)(DPhF)(4)N(3) (1a, DPhF = N,N'-diphenylformamidinate) and Ru(2)(D(3,5-Cl(2))PhF)(4)N(3) (1b, D(3,5-Cl(2))PhF = N,N'-bis(3,5-dichlorophenyl)formamidinate) have been investigated by thermolytic and photolytic experiments to investigate the chemical reactivity of the corresponding diruthenium nitride species. Thermolysis of 1b at ~100 °C leads to the expulsion of N(2) and isolation of Ru(2)(D(3,5-Cl(2))PhF)(3)NH(C(13)H(6)N(2)Cl(4)) (3b), in which a nitrogen atom has been inserted into one of the proximal aryl C-H bonds of a D(3,5-Cl(2))PhF ligand. A similar C-H insertion product is obtained upon thawing a frozen CH(2)Cl(2) solution of the nitride complex Ru(2)(DPhF)(4)N (2a), formed via photolysis at -196 °C of 1a to yield Ru(2)(DPhF)(3)NH(C(13)H(10)N(2)) (3a). Evidence is provided here that both reactions proceed via direct intramolecular attack of an electrophilic terminal nitrido nitrogen atom on a proximal aryl ring. Thermodynamic and kinetic data for this reaction are obtained from differential scanning calorimetric measurements and thermal gravimetric analysis of the thermolysis of Ru(2)(D(3,5-Cl(2))PhF)(4)N(3), and by Arrhenius/Eyring analysis of the conversion of Ru(2)(DPhF)(4)N to its C-H insertion product, respectively. These data are used to develop a detailed, experimentally validated DFT reaction pathway for N(2) extrusion and C-H functionalization from Ru(2)(D(3,5-Cl(2))PhF)(4)N(3). The diruthenium nitrido complex is an intermediate in the calculated reaction pathway, and the C-H functionalization event shares a close resemblance to a classical electrophilic aromatic substitution mechanism.

PubMed Disclaimer

LinkOut - more resources