Sample size planning for longitudinal models: accuracy in parameter estimation for polynomial change parameters
- PMID: 21744968
- DOI: 10.1037/a0023352
Sample size planning for longitudinal models: accuracy in parameter estimation for polynomial change parameters
Abstract
Longitudinal studies are necessary to examine individual change over time, with group status often being an important variable in explaining some individual differences in change. Although sample size planning for longitudinal studies has focused on statistical power, recent calls for effect sizes and their corresponding confidence intervals underscore the importance of obtaining sufficiently accurate estimates of group differences in change. We derived expressions that allow researchers to plan sample size to achieve the desired confidence interval width for group differences in change for orthogonal polynomial change parameters. The approaches developed provide the expected confidence interval width to be sufficiently narrow, with an extension that allows some specified degree of assurance (e.g., 99%) that the confidence interval will be sufficiently narrow. We make computer routines freely available, so that the methods developed can be used by researchers immediately.
Similar articles
-
Accuracy in parameter estimation for targeted effects in structural equation modeling: sample size planning for narrow confidence intervals.Psychol Methods. 2011 Jun;16(2):127-48. doi: 10.1037/a0021764. Psychol Methods. 2011. PMID: 21417531
-
Accuracy in parameter estimation for ANCOVA and ANOVA contrasts: sample size planning via narrow confidence intervals.Br J Math Stat Psychol. 2012 May;65(2):350-70. doi: 10.1111/j.2044-8317.2011.02029.x. Epub 2011 Oct 17. Br J Math Stat Psychol. 2012. PMID: 22004142
-
Sample size planning for the standardized mean difference: accuracy in parameter estimation via narrow confidence intervals.Psychol Methods. 2006 Dec;11(4):363-85. doi: 10.1037/1082-989X.11.4.363. Psychol Methods. 2006. PMID: 17154752
-
Sample size planning for statistical power and accuracy in parameter estimation.Annu Rev Psychol. 2008;59:537-63. doi: 10.1146/annurev.psych.59.103006.093735. Annu Rev Psychol. 2008. PMID: 17937603 Review.
-
Missing data? Plan on it!J Am Geriatr Soc. 2010 Oct;58 Suppl 2:S343-8. doi: 10.1111/j.1532-5415.2010.03053.x. J Am Geriatr Soc. 2010. PMID: 21029065 Review.
Cited by
-
Acute-phase blood pressure trajectories and clinical outcomes in ischemic stroke.J Clin Hypertens (Greenwich). 2019 Aug;21(8):1108-1114. doi: 10.1111/jch.13599. Epub 2019 Jun 29. J Clin Hypertens (Greenwich). 2019. PMID: 31256446 Free PMC article.
-
LIFESPAN: A tool for the computer-aided design of longitudinal studies.Front Psychol. 2015 Mar 24;6:272. doi: 10.3389/fpsyg.2015.00272. eCollection 2015. Front Psychol. 2015. PMID: 25852596 Free PMC article.
-
Power(ful) myths: misconceptions regarding sample size in quality of life research.Qual Life Res. 2022 Oct;31(10):2917-2929. doi: 10.1007/s11136-021-03020-y. Epub 2021 Oct 29. Qual Life Res. 2022. PMID: 34716528
-
Memory training for adults with probable mild cognitive impairment: a pilot study.Aging Ment Health. 2019 Oct;23(10):1433-1441. doi: 10.1080/13607863.2018.1484884. Epub 2018 Oct 10. Aging Ment Health. 2019. PMID: 30303394 Free PMC article. Clinical Trial.
-
Sample size under inverse negative binomial group testing for accuracy in parameter estimation.PLoS One. 2012;7(3):e32250. doi: 10.1371/journal.pone.0032250. Epub 2012 Mar 22. PLoS One. 2012. PMID: 22457714 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources