Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar-Apr;50(2):256-65.
doi: 10.1111/j.1745-6584.2011.00839.x. Epub 2011 Jul 11.

Improved characterization of small "u" for Jacob pumping test analysis methods

Affiliations

Improved characterization of small "u" for Jacob pumping test analysis methods

Scott C Alexander et al. Ground Water. 2012 Mar-Apr.

Abstract

Numerous refinements have been proposed to traditional pumping test analyses, yet many hydrogeologists continue to use the Jacob method due to its simplicity. Recent research favors hydraulic tomography and inverse numerical modeling of pumping test data. However, at sites with few wells, or relatively short screens, the data requirements of these methods may be impractical within physical and fiscal constraints. Alternatively, an improved understanding of the assumptions and limitations of Theis and, due to their widespread usage, Jacob analyses, leads to improved interpretations in data-poor environments. A fundamental requirement of Jacob is a "small" value of u = f(r(2)/t), with radial distance, r, and pumping time, t. However, selection of a too stringent (i.e., too low) maximum permissible u-value, u(max), results in rejection of usable data from wells beyond a maximum radius, r(max). Conversely, data from small radii, less than r(min), where turbulent- and vertical-flow components arise, can result in acceptance of inappropriate data. Usage of drawdown data from wells too close to the pumping well, and exclusion of data from wells deemed too far, can cause unrealistic aquifer transmissivity, permeability, and storativity determinations. Here, data from an extensive well field in a glacial-outwash aquifer in north-central Minnesota, USA, are used to develop a new estimate for u(max). Traditionally quoted values for u(max) range from 0.01 to 0.05. Our proposed value for Jacob distance-drawdown analyses is significantly higher with u(max) up to 0.2, resulting in larger allowable r(max)-values and a higher likelihood of inclusion of additional wells in such pumping test analyses.

PubMed Disclaimer

Publication types

LinkOut - more resources