Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons
- PMID: 21745644
- PMCID: PMC3134797
- DOI: 10.1016/j.neuron.2011.05.028
Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons
Abstract
Leptin acts in the brain to prevent obesity. The underlying neurocircuitry responsible for this is poorly understood, in part because of incomplete knowledge regarding first-order, leptin-responsive neurons. To address this, we and others have been removing leptin receptors from candidate first-order neurons. While functionally relevant neurons have been identified, the observed effects have been small, suggesting that most first-order neurons remain unidentified. Here we take an alternative approach and test whether first-order neurons are inhibitory (GABAergic, VGAT⁺) or excitatory (glutamatergic, VGLUT2⁺). Remarkably, the vast majority of leptin's antiobesity effects are mediated by GABAergic neurons; glutamatergic neurons play only a minor role. Leptin, working directly on presynaptic GABAergic neurons, many of which appear not to express AgRP, reduces inhibitory tone to postsynaptic POMC neurons. As POMC neurons prevent obesity, their disinhibition by leptin action on presynaptic GABAergic neurons probably mediates, at least in part, leptin's antiobesity effects.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures







Comment in
-
Leptin grows up and gets a neural network.Neuron. 2011 Jul 14;71(1):4-6. doi: 10.1016/j.neuron.2011.06.033. Neuron. 2011. PMID: 21745633 Free PMC article.
References
-
- Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN. Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. J Neurosci. 2005;25:7406–7419. - PMC - PubMed
-
- Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–252. - PubMed
-
- Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua SC, Jr, Elmquist JK, Lowell BB. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. 2004;42:983–991. - PubMed
-
- Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005;123:493–505. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous