Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 12;43(1):1-10.
doi: 10.1186/1297-9686-43-27.

A note on the rationale for estimating genealogical coancestry from molecular markers

Affiliations

A note on the rationale for estimating genealogical coancestry from molecular markers

Miguel Angel Toro et al. Genet Sel Evol. .

Abstract

Background: Genetic relatedness or similarity between individuals is a key concept in population, quantitative and conservation genetics. When the pedigree of a population is available and assuming a founder population from which the genealogical records start, genetic relatedness between individuals can be estimated by the coancestry coefficient. If pedigree data is lacking or incomplete, estimation of the genetic similarity between individuals relies on molecular markers, using either molecular coancestry or molecular covariance. Some relationships between genealogical and molecular coancestries and covariances have already been described in the literature.

Methods: We show how the expected values of the empirical measures of similarity based on molecular marker data are functions of the genealogical coancestry. From these formulas, it is easy to derive estimators of genealogical coancestry from molecular data. We include variation of allelic frequencies in the estimators.

Results: The estimators are illustrated with simulated examples and with a real dataset from dairy cattle. In general, estimators are accurate and only slightly biased. From the real data set, estimators based on covariances are more compatible with genealogical coancestries than those based on molecular coancestries. A frequently used estimator based on the average of estimated coancestries produced inflated coancestries and numerical instability. The consequences of unknown gene frequencies in the founder population are briefly discussed, along with alternatives to overcome this limitation.

Conclusions: Estimators of genealogical coancestry based on molecular data are easy to derive. Estimators based on molecular covariance are more accurate than those based on identity by state. A correction considering the random distribution of allelic frequencies improves accuracy of these estimators, especially for populations with very strong drift.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Three modes of genetic identity-by-descent between two outbred individuals at a single locus.
Figure 2
Figure 2
Nine ways in which a pair of relatives can share genes identical by descent.

References

    1. Falconer D, Mackay T. Introduction to quantitative genetics. New York: Longman; 1996.
    1. Ritland K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res. 1996;67:175–185. doi: 10.1017/S0016672300033620. - DOI
    1. Toro M, Barragan C, Ovilo C, Rodriganez J, Rodriguez C, Silió L. Estimation of coancestry in Iberian pigs using molecular markers. Conserv Genet. 2002;3:309–320. doi: 10.1023/A:1019921131171. - DOI
    1. Oliehoek PA, Windig JJ, van Arendonk JAM, Bijma P. Estimating relatedness between individuals in general populations with a focus on their use in conservation programs. Genetics. 2006;173:483–496. doi: 10.1534/genetics.105.049940. - DOI - PMC - PubMed
    1. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–4423. doi: 10.3168/jds.2007-0980. - DOI - PubMed

Publication types

Substances

LinkOut - more resources