Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep;68(9):1112-8.
doi: 10.1139/o90-166.

Incorporation of human liver and placental alkaline phosphatases into liposomes and membranes is via phosphatidylinositol

Affiliations

Incorporation of human liver and placental alkaline phosphatases into liposomes and membranes is via phosphatidylinositol

L Kihn et al. Biochem Cell Biol. 1990 Sep.

Abstract

As assessed by incorporation into liposomes and by adsorption to octyl-Sepharose, the integrity of the membrane anchor for the purified tetrameric forms of alkaline phosphatase from human liver and placenta was intact. Any treatment that resulted in a dimeric enzyme precluded incorporation and adsorption. An intact anchor also allowed incorporation into red cell ghosts. The addition of hydrophobic proteins inhibited incorporation into liposomes to varying degrees. Alkaline phosphatase was 100% releasable from liposomes and red cell ghosts by a phospholipase C specific for phosphatidylinositol. There was no appreciable difference in the rates of release of placental and liver alkaline phosphatases, although both were approximately 250 x slower in liposomes and 100 x slower in red cell ghosts than the enzyme's release from a suspension of cultured osteosarcoma cells. Both enzymes were released by phosphatidylinositol phospholipase C as dimers and would not reincorporate or adsorb to octyl-Sepharose. However, the enzyme incorporated, resolubilized by Triton X-100, and cleansed of the detergent by butanol treatment was tetrameric by gradient gel electrophoresis, was hydrophobic, and could reincorporate into fresh liposomes. A monoclonal antibody to liver alkaline phosphatase inhibited the enzyme's incorporation into liposomes, and abolished its release from liposomes and its conversion to dimers by phosphatidylinositol phospholipase C.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources