Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 25;54(16):5639-59.
doi: 10.1021/jm1010644. Epub 2011 Jul 26.

Structure-activity relationships of antitubercular nitroimidazoles. 3. Exploration of the linker and lipophilic tail of ((s)-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6-amino PA-824)

Affiliations

Structure-activity relationships of antitubercular nitroimidazoles. 3. Exploration of the linker and lipophilic tail of ((s)-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6-amino PA-824)

Joseph Cherian et al. J Med Chem. .

Abstract

The (S)-2-nitro-6-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine named PA-824 (1) has demonstrated antitubercular activity in vitro and in animal models and is currently in clinical trials. We synthesized derivatives at three positions of the 4-(trifluoromethoxy)benzylamino tail, and these were tested for whole-cell activity against both replicating and nonreplicating Mycobacterium tuberculosis (Mtb). In addition, we determined their kinetic parameters as substrates of the deazaflavin-dependent nitroreductase (Ddn) from Mtb that reductively activates these pro-drugs. These studies yielded multiple compounds with 40 nM aerobic whole cell activity and 1.6 μM anaerobic whole cell activity: 10-fold improvements over both characteristics from the parent molecule. Some of these compounds exhibited enhanced solubility with acceptable stability to microsomal and in vivo metabolism. Analysis of the conformational preferences of these analogues using quantum chemistry suggests a preference for a pseudoequatorial orientation of the linker and lipophilic tail.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Superpositions of PA-824 (1) and some R3 derivatives that were geometry optimized at the level of B3LYP/61-31G*. In each the head, tail and linker region of 1 is shown with yellow carbons, A the tail is shown in the pseudo-equatorial conformation while in B the tail is shown in the pseudo-axial conformation. A and B show R3 analogs 32c, 32d, 32f, 41b, and 41f. The inset table shows the difference in enthalpy (ΔH) and Gibbs free energy (ΔG) at 298.15 K calculated for the pseudo-equatorial conformer compared with the pseudo-axial conformer for each compound with a solvent reaction field of cyclohexane. Atoms represented by colors are as follows: green, carbon; dark green, fluorine or chlorine; blue, nitrogen; red, oxygen. Hydrogen atoms are not shown.
Scheme 1
Scheme 1
Reaction conditions: i) HCO2H, Ac2O, THF, 0 °C, 1h, 55%; ii) R1COCl, NaH, DMF rt − 70 °C; iii) R1CHO, NaBH(OAc)3, MeOH/AcOH; iv) triphosgene, EtNH2·HCl, Et3N, THF, 0 °C – rt, 66%.
Scheme 2
Scheme 2
Reaction conditions: n-BuLi, ZnCl2, CuI, THF, −78 °C – rt, 1.5 h, then 4-trifluoromethoxybenzoyl- chloride, rt, 1 h, 40%; ii) diisopropylcarbamyl chloride, DIPEA, 4-trifluoromethoxybenzaldehyde, CH3CN, reflux, 19 h, 73%; iii) 50 % TFA in water, THF, reflux, 15 h, 82%; iv) H2, Pd/C, MeOH, 1 atm, 81%; v) MsCl, Et3N, CH2Cl2, rt, 1 h; vi) 7, NaH, THF, rt, 40 h, 15%.; vii) RMgBr, THF, 0 °C – rt when R = Et and nPr; nBuLi, THF, −78 °C – rt when R = nBu; viii) PBr3, ether, 0 °C – rt; ix) 7, K2CO3, DMF, KI, 90 °C.; x) 4-trifluoromethoxybenzaldehyde, neat, 100 °C, 5 min. then TMSCN, 100 °C, 30 min, 50%; xi) EtOH/HCl, −10 °C, 38%; xii) 7, NaCNBH3, AcOH, EtOH, 5%; xiii) 4-methoxybenzylalcohol, KOtBu, 60 °C, 2 h, 34%; xiv) PDC, CH2Cl2, rt, 24 h, 62%; xv) TBDMSOTf, CH2Cl2, rt, 5 min, 86%; xvi) ethylbromoacetate, Zn, CH2Cl2, rt, 3 h; xvii) LiAlH4, THF, 0 °C - rt, 2 h, 25% over two steps; xviii) MnO2, CH2Cl2, rt, 6 h, 50%; xix) 7, Ti(iOPr)4, AcOH, NaBH3CN, 9%.
Scheme 3
Scheme 3
Reaction conditions: i) EtOH/H+, 80 °C, 80 %; ii) 1-bromo-2-chloroethane, K2CO3, DMF, rt, 15 h, 80%; iii) KOtBu, THF, 1 h, 20 °C, 78 % over two steps; iv) Et2Zn, CH2I2, ClCH2CH2Cl, toluene, rt, 17 h, 51%; v) BH3-DMS, THF, reflux, 1.5 h; vi) PCC, CH2Cl2, rt, 0.5 h, 80 % over two steps; vii) RX, K2CO3, DMF, 70 °C, 30 min - 2 h, when R = Bn, cyclopropylmethyl; MOMCl, DIPEA, CH2Cl2, rt, 3 h; viii) LiAlH4, THF, 0 °C – rt, 1 h; ix) 4-fluoronitrobenzene, NaH, DMF, 100 °C, 2 h, 67%; x) H2, Pd/C, EtOAc, rt, 1.5 h, 87%; xi) NaNO2, H3PO2, 6N HCl, 50 °C, 1 h; xii) NaBH(OAc)3, AcOH, DMF, 20 h; xiii) 6N HCl, THF, 1h, rt.%.
Scheme 4
Scheme 4
Reaction conditions: i) styrene, Pd(OAc)2, Et3N, 95 °C, 16 h, 64%; ii) OsO4, NaIO4, acetone-water, rt, 16 h, 16%; iii) 7, NaCNBH3, AcOH, DMF, 20 h; iv) ethylene glycol, p-TSA, benzene, 80 °C, 8 h, 86%; v) Pd(OAc)2, Cs2CO3, Xantphos, dioxane, amine, 90 °C, 8 h; vi) THF, 6 N HCl, 30 min., room temperature; vii) n-BuLi, THF, −78 °C, DMF, 15 min.
Scheme 5
Scheme 5
Reaction conditions: i) TBSCl, imidazole, CH2Cl2, rt, 60%; ii) s-BuLi, TMEDA, THF, −78 °C, 1 h, then FB(OMe)2, −78 °C, 30 min followed by alk, H2O2, 30 min, 28%; iii) K2CO3, MeI, DMF, 70 °C; iv) MOMCl, DIPEA, DMF, rt, 16 h, 82 %; v) TBAF, THF, rt, 1.5 h; vi) PCC, CH2Cl2, rt, 1 h; vii) 7, NaCNBH3, AcOH, DMF; viii) 4-fluoronitrobenzene, NaH, DMF, 100 °C, 2 h, 30 %; ix) Fe/NH4Cl, EtOAc-water, reflux, 1.5 h; x) NaNO2, H3PO2, 6N HCl, 50 °C, 1 h, 52 % over two steps; xi) ethylene glycol, p-TSA, benzene, 80 °C, 8 h, 72 %; xii) Pd(OAc)2, Cs2CO3, Xantphos, dioxane, amine, 90 °C, 8 h; xiii) THF, 6 N HCl, 30 min., rt; xiv) sec-BuLi, MeOCOCl, THF, −78 °C – rt, 3 h.
Scheme 6
Scheme 6
Reaction conditions: i) NaH, DMF, −78 °C – rt; ii) 6N HCl, THF, rt, 4 h.

References

    1. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405:962–966. - PubMed
    1. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, Shimokawa Y, Komatsu M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3:e466. - PMC - PubMed
    1. Sasaki H, Haraguchi Y, Itotani M, Kuroda H, Hashizume H, Tomishige T, Kawasaki M, Matsumoto M, Komatsu M, Tsubouchi H. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J Med Chem. 2006;49:7854–7860. - PubMed
    1. Diacon AH, Dawson R, Hanekom M, Narunsky K, Maritz SJ, Venter A, Donald PR, van Niekerk C, Whitney K, Rouse DJ, Laurenzi MW, Ginsberg AM, Spigelman MK. Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients. Antimicrob Agents Chemother. 2010;54:3402–3407. - PMC - PubMed
    1. Tasneen R, Tyagi S, Williams K, Grosset J, Nuermberger E. Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother. 2008;52:3664–3668. - PMC - PubMed

Publication types

MeSH terms