Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;25(2):103-19.
doi: 10.3109/03008209009006985.

Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites

Affiliations

Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites

B R Heywood et al. Connect Tissue Res. 1990.

Abstract

The morphology, structure and crystal growth of apatite crystals isolated from calcified turkey tendon and synthetic carbonated apatites have been examined using high resolution transmission electron microscopy. The biogenic apatite consisted of small (35 x 20 x 5 nm) platelike crystals. Despite their irregular shape and ill-defined edges, individual particles were single domain crystals. Lattice images recorded from isolated turkey tendon crystals indicated that the crystallographic c-axis (0001) of apatite lies in the plane of the plate and parallel to the length of the crystallites. Lattice images suggested that the top face corresponds to the (1100) face of carbonated apatite. Lattice fringes observed in platelike crystallites viewed from the side corresponded to the projection of the apatite structure viewed along the [1120] direction. Thus, it can be argued that crystal growth is constrained along the [1100] direction, extends laterally along the [1120] direction, and is maximal along the [0001] direction. This latter direction is aligned with the collagen fiber axis. A mean length to width ratio (1.7) was determined by systemically measuring the maximum distances parallel and perpendicular to the c-axis identified from lattice images of the crystals. Similar information was obtained from lattice images of crystals located in collagen fibres. This confirmed that the morphological and structural features of isolated turkey tendon apatite crystals correlate directly with the in vivo crystallochemical characteristics of apatite. Crystals of synthetic carbonated apatite prepared at 37 degrees C were also platelike and, although generally much larger, had length to width ratios comparable with the turkey tendon apatite. The synthetic carbonated apatites were noticeably more sensitive to radiolytic damage than the turkey tendon crystals. The crystallographic c-axis of the inorganic particles was aligned parallel with the long, physical axis of the plate and the top face was identified as (1100). Similar data were also obtained from noncarbonated synthetic apatite samples. The results of the present study offer critical information about the crystal growth of individual carbonated apatite crystals in calcified turkey tendon and its relationship to the morphology of the crystallites. As similar growth characteristics are expressed in synthetic analogues, the data bring into question the putative regulatory role of the collagen-based matrix upon the nucleation and growth of biogenic apatite.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources