Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Feb;50(2):534-9.
doi: 10.1016/j.bone.2011.06.032. Epub 2011 Jul 4.

Marrow fat metabolism is linked to the systemic energy metabolism

Affiliations
Review

Marrow fat metabolism is linked to the systemic energy metabolism

Beata Lecka-Czernik. Bone. 2012 Feb.

Abstract

Recent advances in understanding the role of bone in the systemic regulation of energy metabolism indicate that bone marrow cells, adipocytes and osteoblasts, are involved in this process. Marrow adipocytes store significant quantities of fat and produce adipokines, leptin and adiponectin, which are known for their role in the regulation of energy metabolism, whereas osteoblasts produce osteocalcin, a bone-specific hormone that has a potential to regulate insulin production in the pancreas and adiponectin production in fat tissue. Both osteoblasts and marrow adipocytes express insulin receptor and respond to insulin-sensitizing anti-diabetic TZDs in a manner, which tightly links bone with the energy metabolism system. Metabolic profile of marrow fat resembles that of both, white and brown fat, which is reflected by its plasticity in acquiring different functions including maintenance of bone micro-environment. Marrow fat responds to physiologic and pathologic changes in energy metabolism status by changing volume and metabolic activity. This review summarizes available information on the metabolic function of marrow fat and provides hypothesis that this fat depot may acquire multiple roles depending on the local and perhaps systemic demands. These functions may include a role in bone energy maintenance and endocrine activities to serve osteogenesis during bone remodeling and bone healing.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Contribution of factors regulating systemic energy metabolism on bone cell development and bone remodeling. The role of β-adrenergic signaling on osteoblast and osteoclasts development, and metabolic function of adipocytes highlighted by bold letters and referenced. Abbreviations: FFA – free fatty acids, PGJ2 – prostaglandin J2, GC – glucocorticoids.
Figure 2
Figure 2
mCT renderings of murine femur (A) and tibia (B) representing longitudinal cross section of mineralized bone tissue (left panel) and fat in the same bone after decalcification and staining with osmium tetroxide (right panel).

References

    1. Ahn JD, Dubern B, Lubrano-Berthelier C, Clement K, Karsenty G. Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology. 2006;147:3196–202. - PubMed
    1. Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009;284:27438–48. - PMC - PubMed
    1. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94:2692–701. - PubMed
    1. Araneta MR, von Muhlen D, Barrett-Connor E. Sex differences in the association between adiponectin and BMD, bone loss, and fractures: the Rancho Bernardo study. J Bone Miner Res. 2009;24:2016–22. - PMC - PubMed
    1. Barbour KE, Zmuda JM, Boudreau R, Strotmeyer ES, Horwitz MJ, Evans RW, Kanaya AM, Harris TB, Bauer DC, Cauley JA. Adipokines and the risk of fracture in older adults. J Bone Miner Res. 2011 [Epub ahead of print] - PMC - PubMed

Publication types

Substances